cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091724 Decimal expansion of e^(2*EulerGamma).

Original entry on oeis.org

3, 1, 7, 2, 2, 1, 8, 9, 5, 8, 1, 2, 5, 4, 5, 0, 5, 2, 7, 7, 2, 7, 9, 1, 3, 4, 0, 9, 0, 6, 9, 4, 7, 4, 9, 7, 7, 1, 2, 2, 9, 5, 7, 7, 3, 7, 7, 7, 2, 3, 0, 0, 4, 5, 8, 5, 1, 4, 7, 7, 8, 2, 8, 8, 4, 1, 9, 2, 5, 2, 1, 4, 4, 1, 1, 6, 3, 8, 9, 4, 6, 3, 6, 6, 4, 6, 3, 8, 1, 7, 8, 7, 5, 0, 8, 4, 8, 9, 6, 6, 6, 5
Offset: 1

Views

Author

Eric W. Weisstein, Feb 01 2004

Keywords

Examples

			3.17221895812545052772791340906947497712295773777230...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[2*EulerGamma], 10, 100][[1]] (* Amiram Eldar, Jun 25 2021 *)
  • PARI
    exp(2*Euler) \\ Michel Marcus, Jun 25 2021

Formula

Equals lim_{x -> 0} e^(2*ExpIntegralEi(-x))/x^2.
Equals A073004^2. - Michel Marcus, Jun 25 2021
Equals lim sup_{n->oo} H(n)/log_2(n)^2, where H(n) = A370689(n)/A370690(n) (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .
Showing 1-2 of 2 results.