cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228127 Numbers n such that first n digits of A091724 (Decimal expansion of E^(2*EulerGamma)) gives a prime number.

Original entry on oeis.org

1, 2, 3, 1080
Offset: 1

Views

Author

Robert Price, Aug 26 2013

Keywords

Comments

a(5) > 10^4.

Crossrefs

Cf. A091724.

Programs

  • Mathematica
    nn=1100;With[{c=RealDigits[E^(2*EulerGamma),10,nn][[1]]},Select[ Range[ nn], PrimeQ[FromDigits[Take[c,#]]]&]] (* Harvey P. Dale, Nov 13 2014 *)

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .

A078559 Numerator of Product_{i=1..n} (p_i + 1)/(p_i - 1) where p_i is the i-th prime.

Original entry on oeis.org

3, 6, 9, 12, 72, 84, 189, 21, 252, 270, 288, 304, 1596, 152, 3648, 49248, 295488, 1526688, 17302464, 622888704, 640191168, 1707176448, 10243058688, 23046882048, 23527025424, 599939148312, 47054050848, 2540918745792
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, B48.

Crossrefs

Programs

  • Maple
    Q:= 1: p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      Q:= Q * (p+1)/(p-1);
      A[n]:= numer(Q);
    od:
    seq(A[i],i=1..100); # Robert Israel, May 11 2018
  • Mathematica
    Numerator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* Alonso del Arte, Aug 23 2011 *)
  • PARI
    a(n) = numerator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ Michel Marcus, May 11 2018

Formula

a(n) = A054640(n)/A078558(n).
a(n)/A078560(n) ~ C*log^2(prime(n)), where C = exp(2*gamma)/zeta(2) = 6(e^gamma/pi)^2 = A091724 / A013661. Physics note: (a(n)/A078560(n) - 1)/(a(n)/A078560(n) + 1) = tanh(Sum_{k=1..n} arctanh(1/prime(k))) is the relativistic sum of n velocities c/2, c/3, ..., c/prime(n), in units where the speed of light c = 1. - Thomas Ordowski, Nov 06 2024

Extensions

Improved definition from Franklin T. Adams-Watters, Dec 02 2005

A246061 Decimal expansion of lim_{n->infinity} ((1/log(n)^2)*Product_{2 < p < n, p prime} p/(p-2)).

Original entry on oeis.org

1, 2, 0, 1, 3, 0, 3, 5, 5, 9, 9, 6, 7, 3, 6, 2, 2, 4, 1, 2, 4, 7, 5, 5, 5, 9, 5, 9, 2, 0, 7, 3, 8, 3, 4, 8, 2, 4, 5, 3, 8, 3, 8, 4, 4, 9, 4, 2, 7, 1, 1, 3, 0, 8, 5, 1, 8, 1, 9, 5, 5, 9, 7, 4, 1, 4, 8, 0, 0, 9, 9, 7, 7, 9, 4, 3, 7, 7, 5, 2, 2, 5, 9, 6, 7, 0, 6, 4, 3, 1, 8, 4, 8, 6, 1, 9, 7, 6, 0, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 11 2014

Keywords

Examples

			1.201303559967362241247555959207383482453838449427113...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

Crossrefs

Programs

  • Mathematica
    digits = 101; s[n_] := (1/n)* N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[ n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[ n]), {n, 2, digits + 60}]; RealDigits[Exp[2*EulerGamma]/(4*C2), 10, digits] // First
  • PARI
    exp(2*Euler)/(4*prodeulerrat(1-1/(p-1)^2, 1, 3)) \\ Amiram Eldar, Apr 27 2025

Formula

Equals exp(2*EulerGamma)/(4*C_2), where C_2 is the twin primes constant A005597.

A273556 Decimal expansion of Rosser's constant.

Original entry on oeis.org

8, 3, 2, 4, 2, 9, 0, 6, 5, 6, 6, 1, 9, 4, 5, 2, 7, 8, 0, 3, 0, 8, 0, 5, 9, 4, 3, 5, 3, 1, 4, 6, 5, 5, 7, 5, 0, 4, 5, 4, 4, 5, 3, 1, 8, 0, 7, 7, 4, 1, 7, 0, 5, 3, 2, 4, 0, 8, 9, 3, 9, 9, 1, 2, 9, 6, 0, 3, 4, 7, 0, 7, 1, 3, 9, 4, 8, 1, 1, 4, 2, 4, 2, 1, 9, 1, 6, 2, 7, 2, 2, 5, 0, 4, 6, 3, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, May 25 2016

Keywords

Comments

Named after the American logician and mathematician John Barkley Rosser, Sr. (1907-1989). - Amiram Eldar, Jun 20 2021

Examples

			0.832429065661945278030805943531465575045445318077417053240893991296...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood constants, p. 86.

Crossrefs

Programs

  • Mathematica
    digits = 98; s[n_] := (1/n)*N[Sum[MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], digits + 60]; C2 = (175/256)*Product[(Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n) )*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, digits + 60}];
    RealDigits[4*C2/Exp[2*EulerGamma], 10, digits] // First
  • PARI
    4 * exp(-2*Euler) * prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 17 2021

Formula

4*C_2/exp(2*EulerGamma), where C_2 is the twin primes constant.
Equals lim_{x->inf} Product_{2 < p <= x} (1-2/p)*log(x)^2.
Showing 1-5 of 5 results.