A066966 Total sum of even parts in all partitions of n.
0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970
Offset: 1
Keywords
Examples
a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- George E. Andrews and Mircea Merca, A further look at the sum of the parts with the same parity in the partitions of n, Journal of Combinatorial Theory, Series A, Volume 203, 105849 (2024).
Crossrefs
Programs
-
Maple
g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41); # Emeric Deutsch, Feb 20 2006 b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
Mathematica
max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *) Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
-
PARI
a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014
Formula
a(n) = 2*Sum_{k=1..floor(n/2)} sigma(k)*numbpart(n-2*k).
a(n) = Sum_{k=0..n} k*A113686(n,k). - Emeric Deutsch, Feb 20 2006
G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Feb 20 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002
More terms from Emeric Deutsch, Feb 20 2006
Comments