A066967 Total sum of odd parts in all partitions of n.
1, 2, 7, 10, 23, 36, 65, 94, 160, 230, 356, 502, 743, 1030, 1480, 2006, 2797, 3760, 5120, 6780, 9092, 11902, 15701, 20350, 26508, 34036, 43860, 55822, 71215, 89988, 113792, 142724, 179137, 223230, 278183, 344602, 426687, 525616, 647085, 792950
Offset: 1
Keywords
Examples
a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the odd parts is (3+1)+(1+1)+(1+1+1+1) = 10.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- George E. Andrews and Mircea Merca, A further look at the sum of the parts with the same parity in the partitions of n, Journal of Combinatorial Theory, Series A, Volume 203, 105849 (2024).
Programs
-
Maple
g:=sum((2*i-1)*x^(2*i-1)/(1-x^(2*i-1)),i=1..50)/product(1-x^j,j=1..50): gser:=series(g,x=0,50): seq(coeff(gser,x^n),n=1..47); # Emeric Deutsch, Feb 19 2006 b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]*i] fi end: a:= n-> b(n, n)[2]: seq (a(n), n=1..50); # Alois P. Heinz, Mar 22 2012
-
Mathematica
max = 50; g = Sum[(2*i-1)*x^(2*i-1)/(1-x^(2*i-1)), {i, 1, max}]/Product[1-x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *) Map[Total[Select[Flatten[IntegerPartitions[#]], OddQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
Formula
a(n) = Sum_{k=1..n} b(k)*numbpart(n-k), where b(k)=A000593(k)=sum of odd divisors of k.
a(n) = sum(k*A113685(n,k), k=0..n). - Emeric Deutsch, Feb 19 2006
G.f.: sum((2i-1)x^(2i-1)/(1-x^(2i-1)), i=1..infinity)/product(1-x^j, j=1..infinity). - Emeric Deutsch, Feb 19 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018
Extensions
More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002
Comments