A066990 In canonical prime factorization of n replace even exponents with 2 and odd exponents with 1.
1, 2, 3, 4, 5, 6, 7, 2, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 6, 25, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 6, 55, 14, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Brahim Mittou, New properties of an arithmetic function, Mathematica Montisnigri, Vol LIII (2022), pp. 5-11.
- Eric Weisstein's World of Mathematics, Cubefree.
Programs
-
Haskell
a066990 n = product $ zipWith (^) (a027748_row n) (map ((2 -) . (`mod` 2)) $ a124010_row n) -- Reinhard Zumkeller, Dec 02 2012
-
Mathematica
fx[{a_,b_}]:={a,If[EvenQ[b],2,1]}; Table[Times@@(#[[1]]^#[[2]]&/@(fx/@ FactorInteger[n])),{n,70}] (* Harvey P. Dale, Jan 01 2012 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2 - f[i,2]%2));} \\ Amiram Eldar, Oct 28 2022
-
Python
from math import prod from sympy import factorint def a(n): return prod(p**(2-(e&1)) for p, e in factorint(n).items()) print([a(n) for n in range(1, 70)]) # Michael S. Branicky, Jun 03 2025
Formula
Multiplicative with a(p^e) = p^(2 - e mod 2), p prime, e>0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 0.4296463408... . - Amiram Eldar, Oct 28 2022
Comments