cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067056 a(n) = (1)*(2 + 3 + 4 + ... + n) + (1 + 2)*(3 + 4 + 5 + ... + n) + (1 + 2 + 3)*(4 + 5 + 6 + ... + n) + ... + (1 + 2 + 3 + ... + n-1)*n.

Original entry on oeis.org

1, 2, 14, 54, 154, 364, 756, 1428, 2508, 4158, 6578, 10010, 14742, 21112, 29512, 40392, 54264, 71706, 93366, 119966, 152306, 191268, 237820, 293020, 358020, 434070, 522522, 624834, 742574, 877424, 1031184, 1205776, 1403248, 1625778, 1875678, 2155398, 2467530
Offset: 1

Views

Author

Amarnath Murthy, Jan 02 2002

Keywords

Examples

			a(4) = (1)*(2+3+4) + (1+2)*(3+4) + (1+2+3)*(4) = 9 + 21 + 24 = 54.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Total[Total[#[[1]]Total[#[[2]]]]&/@Table[TakeDrop[ Range[ k],n],{n,k-1}]],{k,2,40}]] (* Requires Mathematica version 10 or later *)  (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,14,54,154,364,756},40] (* Harvey P. Dale, Jul 17 2020 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = if (n=1, 1, sum(k=1, n-1, t(k)*(t(n) - t(k)))); \\ Michel Marcus, Mar 06 2018
    
  • PARI
    Vec(x*(1 - 4*x + 17*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6) / (1 - x)^6 + O(x^60)) \\ Colin Barker, Mar 06 2018

Formula

a(n) = Sum_{r=1..n-1} t(r)*(t(n) - t(r)), where t(r) is the r-th triangular number, n>1.
a(n) = n*(2*n^4 + 5*n^3 - 5*n - 2)/60 = (n-1)*n*(n+1)*(n+2)*(2*n+1)/60, n>1. - Ralf Stephan, Apr 30 2004
a(n) = 2*A005585(n-1), n>1. - R. J. Mathar, May 20 2013
a(n) = Sum_{i=1..n} A000217(i)*A001105(n-i) for n>1, a(1)=1. - Bruno Berselli, Mar 06 2018
From Colin Barker, Mar 06 2018: (Start)
G.f.: x*(1 - 4*x + 17*x^2 - 20*x^3 + 15*x^4 - 6*x^5 + x^6) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>7.
(End)

Extensions

More terms from Jason Earls, Jan 11 2002