A067071 Numbers with no zeros in their cubes such that the products of the digits of their cubes are also cubes.
1, 2, 29, 61, 211, 224, 259, 331, 406, 456, 704, 758, 774, 819, 822, 906, 1578, 1708, 1768, 2246, 2313, 2332, 2474, 3409, 3982, 4006, 4046, 4331, 4347, 4348, 4367, 4376, 4608, 4832, 4865, 4921, 5226, 5332, 5477, 5554, 5692, 5774, 5971, 6357, 6408, 6449
Offset: 1
Examples
224 belongs to this sequence as 224^3 = 11239424 and the product of the digits = 1728 = 12^3.
References
- Felice Russo, A set of new Smarandache Functions, Sequences and conjectures in number theory, American Research Press, Lupton USA.
Programs
-
Mathematica
Do[a = Apply[Times, IntegerDigits[n^3]]; If[ a != 0 && IntegerQ[a^(1/3)], Print[n]], {n, 1, 10^4} ] Select[Range[7000],With[{c=Times@@IntegerDigits[#^3]},c>0&&IntegerQ[CubeRoot[c]]]&] (* Harvey P. Dale, Apr 13 2025 *)
Extensions
More terms from Robert G. Wilson v, Jan 15 2002
Offset changed by Andrew Howroyd, Sep 17 2024
Definition clarified by Harvey P. Dale, Apr 13 2025