cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066733 Numbers such that the product of the digits of its square is a square > 0.

Original entry on oeis.org

1, 2, 3, 7, 12, 17, 21, 38, 88, 106, 107, 108, 109, 117, 122, 128, 129, 141, 146, 164, 168, 171, 173, 178, 191, 196, 204, 206, 207, 208, 209, 212, 221, 222, 236, 263, 276, 278, 288, 306, 342, 359, 364, 367, 372, 377, 394, 432, 463, 478, 479, 518, 537, 538
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Examples

			17 is in the sequence because the square of 17 is 289 and 2*8*9 = 144 = 12^2.
		

Crossrefs

Cf. A067071.

Programs

  • Mathematica
    Do[a = Apply[Times, IntegerDigits[n^2]]; If[ a != 0 && IntegerQ[a^(1/2)], Print[n]], {n, 1, 10^4} ]
    nzpQ[n_]:=Module[{prod=Times@@IntegerDigits[n^2]},prod!=0 && IntegerQ[ Sqrt[ prod]]]; Select[Range[600],nzpQ] (* Harvey P. Dale, May 27 2012 *)
  • PARI
    isok(k)= { my(p=vecprod(digits(k^2))); p > 0 && issquare(p) } \\ Harry J. Smith, Mar 20 2010

A066734 Numbers such that the nonzero product of the digits of its 4th power is also a 4th power.

Original entry on oeis.org

1, 118, 144, 211, 427, 739, 1836, 8958, 19638, 20528, 21454, 22359, 24533, 26022, 27378, 29648, 33038, 33204, 33648, 40226, 40262, 46416, 47181, 47198, 49314, 53133, 55273, 55792, 59559, 59754, 60924, 61292, 61763, 61933, 66408, 68302
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Examples

			118 is in the sequence because the 4th power of 118 is 193877776 and 1*9*3*8*7*7*7*7*6 = 3111696 = 42^4.
		

Crossrefs

Cf. A067071.

Programs

  • Mathematica
    Do[a = Apply[Times, IntegerDigits[n^2]]; If[ a != 0 && IntegerQ[a^(1/2)], Print[n]], {n, 1, 10^4} ]
    d4pQ[n_]:=Module[{t=Times@@IntegerDigits[n^4]},t!=0&&IntegerQ[Surd[t,4]]]; Select[Range[70000],d4pQ] (* Harvey P. Dale, Feb 20 2018 *)
  • PARI
    isok(k)={my(p=vecprod(digits(k^4))); p && ispower(p, 4)} \\ Harry J. Smith, Mar 20 2010

A067070 Cubes whose product of digits is a cube > 0.

Original entry on oeis.org

1, 8, 24389, 226981, 9393931, 11239424, 17373979, 36264691, 66923416, 94818816, 348913664, 435519512, 463684824, 549353259, 555412248, 743677416, 3929352552, 4982686912, 5526456832, 11329982936, 12374478297, 12681938368, 15142552424
Offset: 1

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Examples

			24389 is in the sequence because (1) it is a cube and (2) the product of its digits is 2*4*3*8*9, = 1728 which is a cube > 0.
		

References

  • Felice Russo, A set of new Smarandache Functions, Sequences and conjectures in number theory, American Research Press, Lupton USA.

Crossrefs

Intersection of A237767 and A000578.

Programs

  • Mathematica
    pdcQ[n_]:=Module[{pd=Times@@IntegerDigits[n]},pd>0&&IntegerQ[ Surd[ pd,3]]]; Select[Range[3000]^3,pdcQ] (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    isA237767(k)={my(p=vecprod(digits(k))); p && ispower(p,3)}
    { for (m=1, 2500, if(isA237767(m^3), print1(m^3, ", "))) } \\ Harry J. Smith, May 04 2010
    
  • PARI
    first(n) = {
         my(res = List(), c, vp, i);
         for(i = 1, oo,
              c = i^3;
              vp = vecprod(digits(c));
              if(vp && ispower(vp,3),
                   listput(res, c);
                   if(#res >= n,
                        return(Vec(res))
                   )
              )
         )
    } \\ David A. Corneth, Dec 01 2023

Formula

a(n) = A067071(n)^3. - Andrew Howroyd, Dec 05 2024

Extensions

More terms from Sascha Kurz, Mar 23 2002
One further term from Luc Stevens (lms022(AT)yahoo.com), May 03 2006
Edited by R. J. Mathar, Aug 08 2008
Offset changed from 0 to 1 by Harry J. Smith, May 04 2010
Showing 1-3 of 3 results.