cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067095 a(n) = floor(X/Y) where X is the concatenation in increasing order of the first n even numbers and Y is that of the first n odd numbers.

Original entry on oeis.org

2, 1, 1, 1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

For n > 1, the sequence is increasing and tends to infinity. Proof: for k>=1, when the last concatenated integer at the numerator A019520(n) has k digits, then a(n) > 10^(k-1) (see Krusemeyer reference). - Bernard Schott, Dec 06 2021
Values taken by this function are in A349960. - Bernard Schott, Dec 18 2021

Examples

			a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1.
a(20000) = 18175.
		

References

  • Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ]
    With[{ev=Range[2,140,2],od=Range[1,139,2]},Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev,n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od,n]]]],{n,70}]] (* Harvey P. Dale, Aug 19 2011 *)
  • PARI
    ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520
    ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521
    a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021

Formula

a(n) = floor(A019520(n)/A019519(n)).

Extensions

More terms from Robert G. Wilson v, Jan 09 2002