A067095 a(n) = floor(X/Y) where X is the concatenation in increasing order of the first n even numbers and Y is that of the first n odd numbers.
2, 1, 1, 1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181
Offset: 1
Examples
a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1. a(20000) = 18175.
References
- Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
Crossrefs
Programs
-
Mathematica
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ] With[{ev=Range[2,140,2],od=Range[1,139,2]},Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev,n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od,n]]]],{n,70}]] (* Harvey P. Dale, Aug 19 2011 *)
-
PARI
ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520 ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521 a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021
Extensions
More terms from Robert G. Wilson v, Jan 09 2002
Comments