cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A349960 Values taken by the function A067095 in the order of their appearance.

Original entry on oeis.org

2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1

Views

Author

Bernard Schott, Dec 07 2021

Keywords

Comments

a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by Giorgos Kalogeropoulos; now, from this limit, it is possible to get the successive terms of this sequence here.

Examples

			Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
		

References

  • Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
    k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
    DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
  • Python
    def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021
    from itertools import count
    def A349960(n): # a more efficient implementation
        if n <= 2:
            return 3-n
        a, b = '', ''
        for i in count(1,2):
            a += str(i)
            b += str(i+1)
            ai, bi = int(a), int(b)
            if len(a)+n-2 == len(b): return bi//ai
            m = 10**(n-2-len(b)+len(a))
            lb = bi*m//(ai+1)
            ub = (bi+1)*m//ai
            if lb == ub: return lb # Chai Wah Wu, Dec 10 2021

Formula

a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021

Extensions

a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021

A019519 Concatenate odd numbers.

Original entry on oeis.org

1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719, 13579111315171921, 1357911131517192123, 135791113151719212325, 13579111315171921232527, 1357911131517192123252729, 135791113151719212325272931
Offset: 1

Views

Author

R. Muller

Keywords

References

  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Primes are in A048847, while their indices are in A046036.
Cf. A019520 (similar, with even numbers), A067095.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), 2*n-1))) end:
    seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nn=20;With[{odds=Range[1,2nn+1,2]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[odds,n]]],{n,nn}]] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    a(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ Michel Marcus, Dec 07 2021
  • Python
    def a(n): return int("".join(map(str, range(1, 2*n, 2))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 13 2021
    

Formula

Sequence grows like 10^K, where K = 2 + floor(log_10(n)) + floor(log_10(a(n-1))). More generally we may consider a(n)= F(a(n-1),n)*B^K + G(a(n-1),n); K = floor(log_B H(a(n-1),n)); F(a(n-1),n); G(a(n-1),n); H(a(n-1),n) integer polynomials; B integer. - Ctibor O. Zizka, Mar 08 2008
Lim_{n->oo} a(n)/A019520(n) = 0 (see A067095). - Bernard Schott, Dec 07 2021

Extensions

More terms from Erich Friedman
More terms from Harvey P. Dale, Aug 14 2014

A019520 a(n) is the concatenation of the first n positive even numbers.

Original entry on oeis.org

2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 2468101214161820, 246810121416182022, 24681012141618202224, 2468101214161820222426, 246810121416182022242628, 24681012141618202224262830, 2468101214161820222426283032
Offset: 1

Views

Author

R. Muller

Keywords

References

  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • F. Smarandache, "Collected Papers", Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Cf. A019519 (similar, with odd numbers), A067095, A108728.

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@(2Range[n])]],{n,20}] (* Harvey P. Dale, Mar 24 2013 *)
  • Python
    def a(n): return int("".join(str(2*i) for i in range(1, n+1)))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Dec 18 2021

Formula

Lim_{n->oo} A019519(n)/a(n) = 0 (see A067095). - Bernard Schott, Dec 18 2021

Extensions

More terms from Erich Friedman
More terms from Harvey P. Dale, Mar 24 2013

A067096 Floor[X/Y] where X = concatenation in increasing order of first n even numbers and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 2, 19, 199, 1999, 19991, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

Almost all terms appear only once. However, in the first 5000 terms, the term 2 appears 4 times in a row; the term 199916 appears 41 times in a row; the term 19991620000261183803815753482837892477715440187362570807 appears 401 times in a row; and a term with 556 digits (that begins with the same digits as the term that appears 401 times in a row) appears 4001 times in a row. Does this pattern continue? - Harvey P. Dale, Jul 04 2012

Examples

			a(10) = floor[ 2468101214161820/12345678910] = floor[199916.20000441271803658143252326] = 199916.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 40} ]
    ccat[n_,i_]:=FromDigits[Flatten[IntegerDigits/@Range[i,n,i]]]; Table[ Floor[ ccat[2m,2]/ccat[m,1]],{m,40}] (* Harvey P. Dale, Jul 04 2012 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067097 Floor[X/Y] where X = concatenation in increasing order of first n powers of 2 and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 20, 201, 2010, 201012, 20101226, 2010122457, 201012245610, 20101224560848, 2010122456084687, 201012245608468521, 201012245608468519453, 201012245608468519428723, 201012245608468519428463029, 2010122456084685194284602619644
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(6)= floor [ 248163264/123456] = floor[2010.13530326594090202177293] = 2010.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(2^Range[n])]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,20}] (* Harvey P. Dale, Dec 30 2018 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002
More terms from Harvey P. Dale, Dec 30 2018

A067098 Floor[X/Y] where X = concatenation in increasing order of first n powers of 3 and Y = that of first n natural numbers.

Original entry on oeis.org

3, 3, 31, 318, 31817, 3181548, 3181530396, 3181528335091, 31815281031585777, 31815281005815399552, 318152810055319253966698, 3181528100552883295133046294, 318152810055287994498392866979206
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(4)= floor [ 392781/1234] = floor[318.299027552674230145867098865478] = 318.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[3^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 15} ]
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(3^Range[n])]]/ FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Mar 10 2019 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067101 Floor[ X/Y], where X = concatenation of the primes and Y = concatenation of natural numbers.

Original entry on oeis.org

2, 1, 1, 1, 19, 190, 1909, 19092, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 1909260, 19092601, 190926018, 1909260182, 19092601827, 190926018273
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(5) = floor [235711/12345]=floor[19.093641150...] = 19.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[Prime[k]]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 25} ]
    nn=40;With[{prs=Prime[Range[nn]],nats=Range[nn]},Table[Floor[FromDigits[ Flatten[IntegerDigits/@Take[prs,n]]]/FromDigits[Flatten[IntegerDigits /@Take[nats,n]]]],{n,nn}]] (* Harvey P. Dale, Mar 24 2012 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067102 Floor[ X/Y] where X = concatenation of the squares and Y = concatenation of natural numbers.

Original entry on oeis.org

1, 1, 1, 12, 120, 1208, 12082, 120821, 1208216, 12082165, 120821655, 1208216555, 12082165556, 120821655562, 1208216555626, 12082165556267, 120821655562672, 1208216555626728, 12082165556267282, 120821655562672822
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(5) = floor [1491625/12345]=floor[] = floor[120.828270554880518428513568246254]=120.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^2]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067103 a(n) = floor(X/Y), where X = concatenation of cubes and Y = concatenation of natural numbers.

Original entry on oeis.org

1, 1, 14, 148, 14804, 1480398, 148039049, 14803895356, 1480389427723, 148038942652481, 14803894265116205, 1480389426511476635, 148038942651147507639, 14803894265114750596056, 1480389426511475059425814, 148038942651147505942389607, 14803894265114750594238756940
Offset: 1

Views

Author

Robert G. Wilson v, Jan 09 2002

Keywords

Comments

a(n) -> 148038942651147505942387547594667814093751032610233441970375...

Examples

			a(6) = floor(182764125216/123456) = floor(1480398.888802...) = 1480398.
		

Crossrefs

Programs

  • Maple
    a:= n-> floor(parse(cat(i^3$i=1..n))/parse(cat($1..n))):
    seq(a(n), n=1..17);  # Alois P. Heinz, May 25 2022
  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^3]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
    nn=20;With[{c=Table[IntegerDigits[n^3],{n,nn}],s=Table[IntegerDigits[n],{n,nn}]}, Table[Floor[FromDigits[Flatten[Take[c,i]]]/FromDigits[Flatten[Take[s,i]]]],{i,nn}]] (* Harvey P. Dale, Feb 10 2013 *)
  • PARI
    c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
    c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
    a(n) = c3(n)\c1(n); \\ Michel Marcus, May 25 2022

A067104 a(n) = floor[ X/Y], where X = concatenation of first n factorials and Y = concatenation of first n natural numbers.

Original entry on oeis.org

1, 1, 1, 10, 1022, 102256, 102255452, 1022553862210, 102255378766606673, 10225537868377981588347, 10225537868286872045185666318, 102255378682858781228966381713174081, 10225537868285867355405173700779791589867289
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(5) = floor [12624120/12345] = floor[1022.60996354799513973268529769137] = 1022.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(Range[n]!)]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Jun 09 2020 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by Charles R Greathouse IV, Apr 27 2010
Showing 1-10 of 11 results. Next