A349960
Values taken by the function A067095 in the order of their appearance.
Original entry on oeis.org
2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1
Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
- Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
-
terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
-
def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021
from itertools import count
def A349960(n): # a more efficient implementation
if n <= 2:
return 3-n
a, b = '', ''
for i in count(1,2):
a += str(i)
b += str(i+1)
ai, bi = int(a), int(b)
if len(a)+n-2 == len(b): return bi//ai
m = 10**(n-2-len(b)+len(a))
lb = bi*m//(ai+1)
ub = (bi+1)*m//ai
if lb == ub: return lb # Chai Wah Wu, Dec 10 2021
A019519
Concatenate odd numbers.
Original entry on oeis.org
1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719, 13579111315171921, 1357911131517192123, 135791113151719212325, 13579111315171921232527, 1357911131517192123252729, 135791113151719212325272931
Offset: 1
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
- X. Chen and M. Le, The Module Periodicity of Smarandache Concatenated Odd Sequence, Smarandache Notions Journal, Vol. 9, No. 1-2. 1998, 103-104.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- F. Smarandache, Definitions, Solved and Unsolved Problems, Conjectures, ... , edited by M. Perez, Xiquan Publishing House 2000.
- F. Smarandache, Collected Papers, Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences
- Index entries for sequences related to Most Wanted Primes video
-
a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), 2*n-1))) end:
seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
-
nn=20;With[{odds=Range[1,2nn+1,2]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[odds,n]]],{n,nn}]] (* Harvey P. Dale, Aug 14 2014 *)
-
a(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ Michel Marcus, Dec 07 2021
-
def a(n): return int("".join(map(str, range(1, 2*n, 2))))
print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 13 2021
A019520
a(n) is the concatenation of the first n positive even numbers.
Original entry on oeis.org
2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 2468101214161820, 246810121416182022, 24681012141618202224, 2468101214161820222426, 246810121416182022242628, 24681012141618202224262830, 2468101214161820222426283032
Offset: 1
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
- F. Smarandache, "Collected Papers", Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
- S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.
-
Table[FromDigits[Flatten[IntegerDigits/@(2Range[n])]],{n,20}] (* Harvey P. Dale, Mar 24 2013 *)
-
def a(n): return int("".join(str(2*i) for i in range(1, n+1)))
print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Dec 18 2021
A067096
Floor[X/Y] where X = concatenation in increasing order of first n even numbers and Y = that of first n natural numbers.
Original entry on oeis.org
2, 2, 2, 2, 19, 199, 1999, 19991, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916
Offset: 1
a(10) = floor[ 2468101214161820/12345678910] = floor[199916.20000441271803658143252326] = 199916.
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 40} ]
ccat[n_,i_]:=FromDigits[Flatten[IntegerDigits/@Range[i,n,i]]]; Table[ Floor[ ccat[2m,2]/ccat[m,1]],{m,40}] (* Harvey P. Dale, Jul 04 2012 *)
A067097
Floor[X/Y] where X = concatenation in increasing order of first n powers of 2 and Y = that of first n natural numbers.
Original entry on oeis.org
2, 2, 2, 20, 201, 2010, 201012, 20101226, 2010122457, 201012245610, 20101224560848, 2010122456084687, 201012245608468521, 201012245608468519453, 201012245608468519428723, 201012245608468519428463029, 2010122456084685194284602619644
Offset: 1
a(6)= floor [ 248163264/123456] = floor[2010.13530326594090202177293] = 2010.
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
Table[Floor[FromDigits[Flatten[IntegerDigits/@(2^Range[n])]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,20}] (* Harvey P. Dale, Dec 30 2018 *)
A067098
Floor[X/Y] where X = concatenation in increasing order of first n powers of 3 and Y = that of first n natural numbers.
Original entry on oeis.org
3, 3, 31, 318, 31817, 3181548, 3181530396, 3181528335091, 31815281031585777, 31815281005815399552, 318152810055319253966698, 3181528100552883295133046294, 318152810055287994498392866979206
Offset: 1
a(4)= floor [ 392781/1234] = floor[318.299027552674230145867098865478] = 318.
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[3^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 15} ]
Table[Floor[FromDigits[Flatten[IntegerDigits/@(3^Range[n])]]/ FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Mar 10 2019 *)
A067101
Floor[ X/Y], where X = concatenation of the primes and Y = concatenation of natural numbers.
Original entry on oeis.org
2, 1, 1, 1, 19, 190, 1909, 19092, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 190926, 1909260, 19092601, 190926018, 1909260182, 19092601827, 190926018273
Offset: 1
a(5) = floor [235711/12345]=floor[19.093641150...] = 19.
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[Prime[k]]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 25} ]
nn=40;With[{prs=Prime[Range[nn]],nats=Range[nn]},Table[Floor[FromDigits[ Flatten[IntegerDigits/@Take[prs,n]]]/FromDigits[Flatten[IntegerDigits /@Take[nats,n]]]],{n,nn}]] (* Harvey P. Dale, Mar 24 2012 *)
A067102
Floor[ X/Y] where X = concatenation of the squares and Y = concatenation of natural numbers.
Original entry on oeis.org
1, 1, 1, 12, 120, 1208, 12082, 120821, 1208216, 12082165, 120821655, 1208216555, 12082165556, 120821655562, 1208216555626, 12082165556267, 120821655562672, 1208216555626728, 12082165556267282, 120821655562672822
Offset: 1
a(5) = floor [1491625/12345]=floor[] = floor[120.828270554880518428513568246254]=120.
Cf.
A067091,
A067092,
A067093,
A067094,
A067095,
A067096,
A067097,
A067098,
A067099,
A067100,
A067101.
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^2]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
A067103
a(n) = floor(X/Y), where X = concatenation of cubes and Y = concatenation of natural numbers.
Original entry on oeis.org
1, 1, 14, 148, 14804, 1480398, 148039049, 14803895356, 1480389427723, 148038942652481, 14803894265116205, 1480389426511476635, 148038942651147507639, 14803894265114750596056, 1480389426511475059425814, 148038942651147505942389607, 14803894265114750594238756940
Offset: 1
a(6) = floor(182764125216/123456) = floor(1480398.888802...) = 1480398.
Cf.
A067091,
A067092,
A067093,
A067094,
A067095,
A067096,
A067097,
A067098,
A067099,
A067100,
A067101,
A067102.
-
a:= n-> floor(parse(cat(i^3$i=1..n))/parse(cat($1..n))):
seq(a(n), n=1..17); # Alois P. Heinz, May 25 2022
-
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[k^3]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
nn=20;With[{c=Table[IntegerDigits[n^3],{n,nn}],s=Table[IntegerDigits[n],{n,nn}]}, Table[Floor[FromDigits[Flatten[Take[c,i]]]/FromDigits[Flatten[Take[s,i]]]],{i,nn}]] (* Harvey P. Dale, Feb 10 2013 *)
-
c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
a(n) = c3(n)\c1(n); \\ Michel Marcus, May 25 2022
A067104
a(n) = floor[ X/Y], where X = concatenation of first n factorials and Y = concatenation of first n natural numbers.
Original entry on oeis.org
1, 1, 1, 10, 1022, 102256, 102255452, 1022553862210, 102255378766606673, 10225537868377981588347, 10225537868286872045185666318, 102255378682858781228966381713174081, 10225537868285867355405173700779791589867289
Offset: 1
a(5) = floor [12624120/12345] = floor[1022.60996354799513973268529769137] = 1022.
Cf.
A067091,
A067092,
A067093,
A067094,
A067095,
A067096,
A067097,
A067098,
A067099,
A067100,
A067101,
A067102,
A067103.
-
Table[Floor[FromDigits[Flatten[IntegerDigits/@(Range[n]!)]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Jun 09 2020 *)
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Showing 1-10 of 11 results.
Comments