cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A046036 Indices of the concatenation of the first k odd numbers (A019519) which are primes.

Original entry on oeis.org

2, 10, 16, 34, 49, 2570
Offset: 1

Views

Author

Keywords

Comments

No others with k <= 12000. - Eric W. Weisstein, Mar 01 2004
No others with k <= 25000. - Michael S. Branicky, Aug 28 2025

Crossrefs

Programs

Formula

a(n) = (A066811(n)+1)/2. - Michel Marcus, Jan 31 2014

A072723 Integers which are exactly the concatenation of the first m odd numbers (A019519) divided by their sum (A000290 = m^2).

Original entry on oeis.org

1, 15, 16764334957, 3079163563531047898532266016633501
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2002

Keywords

Comments

A probability argument suggests that this sequence may be finite.

Examples

			a(1) = 1/1 = 1; a(2) = 135/(1+3+5) = 15; a(3) = 1357911131517/(1+3+5+7+9+11+13+15+17) = 16764334957; a(4) = 1357911131517192123252729313335373941/(1+3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41) = 3079163563531047898532266016633501.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@Range[1,2n+1,2]]]/Total[Range[1,2n+1,2]],{n,0,30}],IntegerQ] (* Harvey P. Dale, Mar 24 2023 *)

A067122 Floor[X/Y] where X = concatenation of first n odd numbers in increasing order (A019519) and Y = their sum (A000290 = n^2).

Original entry on oeis.org

1, 3, 15, 84, 543, 37719, 2771247, 212173614, 16764334957, 1357911131517, 112224060455966, 9429938413313834, 803497710956918416, 69281180179448577716, 6035160584520853881123, 530434035748903173145597
Offset: 1

Views

Author

Amarnath Murthy, Jan 08 2002

Keywords

Examples

			a(4) = floor[1357/16] = floor[84.8125] =84.
		

Crossrefs

Extensions

More terms from Henry Bottomley, Jul 07 2002

A260802 Odd numbers x = 2n - 1 such that the concatenation of A019519(n) and A038395(n-1) is prime.

Original entry on oeis.org

3, 13, 19, 21, 67
Offset: 1

Views

Author

Abhiram R Devesh, Jul 31 2015

Keywords

Examples

			a(1) = 3 since 13_1 is prime;
a(2) = 13 since 135791113_1197531 is prime;
a(3) = 19 since 135791113151719_1715131197531 is prime.
		

Crossrefs

Programs

  • Python
    import sympy
    n=1
    while n>0:
        s=str(n)
        for m in range(n-2,0,-2):
            s=str(m)+s+str(m)
        p=int(s)
        if sympy.isprime(p)==True:
            print(n)
        n=n+2

A019520 a(n) is the concatenation of the first n positive even numbers.

Original entry on oeis.org

2, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, 24681012141618, 2468101214161820, 246810121416182022, 24681012141618202224, 2468101214161820222426, 246810121416182022242628, 24681012141618202224262830, 2468101214161820222426283032
Offset: 1

Views

Author

R. Muller

Keywords

References

  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • F. Smarandache, "Collected Papers", Vol. II, Tempus Publ. Hse., Bucharest, Romania, 1996.
  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Cf. A019519 (similar, with odd numbers), A067095, A108728.

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@(2Range[n])]],{n,20}] (* Harvey P. Dale, Mar 24 2013 *)
  • Python
    def a(n): return int("".join(str(2*i) for i in range(1, n+1)))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Dec 18 2021

Formula

Lim_{n->oo} A019519(n)/a(n) = 0 (see A067095). - Bernard Schott, Dec 18 2021

Extensions

More terms from Erich Friedman
More terms from Harvey P. Dale, Mar 24 2013

A067095 a(n) = floor(X/Y) where X is the concatenation in increasing order of the first n even numbers and Y is that of the first n odd numbers.

Original entry on oeis.org

2, 1, 1, 1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

For n > 1, the sequence is increasing and tends to infinity. Proof: for k>=1, when the last concatenated integer at the numerator A019520(n) has k digits, then a(n) > 10^(k-1) (see Krusemeyer reference). - Bernard Schott, Dec 06 2021
Values taken by this function are in A349960. - Bernard Schott, Dec 18 2021

Examples

			a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1.
a(20000) = 18175.
		

References

  • Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ]
    With[{ev=Range[2,140,2],od=Range[1,139,2]},Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev,n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od,n]]]],{n,70}]] (* Harvey P. Dale, Aug 19 2011 *)
  • PARI
    ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520
    ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521
    a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021

Formula

a(n) = floor(A019520(n)/A019519(n)).

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067096 Floor[X/Y] where X = concatenation in increasing order of first n even numbers and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 2, 19, 199, 1999, 19991, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

Almost all terms appear only once. However, in the first 5000 terms, the term 2 appears 4 times in a row; the term 199916 appears 41 times in a row; the term 19991620000261183803815753482837892477715440187362570807 appears 401 times in a row; and a term with 556 digits (that begins with the same digits as the term that appears 401 times in a row) appears 4001 times in a row. Does this pattern continue? - Harvey P. Dale, Jul 04 2012

Examples

			a(10) = floor[ 2468101214161820/12345678910] = floor[199916.20000441271803658143252326] = 199916.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 40} ]
    ccat[n_,i_]:=FromDigits[Flatten[IntegerDigits/@Range[i,n,i]]]; Table[ Floor[ ccat[2m,2]/ccat[m,1]],{m,40}] (* Harvey P. Dale, Jul 04 2012 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A048847 Primes formed by concatenation of first k odd numbers.

Original entry on oeis.org

13, 135791113151719, 135791113151719212325272931, 135791113151719212325272931333537394143454749515355575961636567
Offset: 1

Views

Author

N. J. A. Sloane, Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

The next term (a(5)) has 93 digits. - Harvey P. Dale, Mar 05 2013
a(6) has 9725 digits (see A066811(6) or A046036(6)). - Michel Marcus, Jan 31 2014

References

  • R. W. Stephan, Factors and Primes in Two Smarandache Sequences, Smarandache Notions Journal, second edition, Vol. 9, No. 1-2, 1998, 5-11.

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@Range[1,2n+1,2]]],{n,40}], PrimeQ] (* Harvey P. Dale, Mar 05 2013 *)

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A067097 Floor[X/Y] where X = concatenation in increasing order of first n powers of 2 and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 20, 201, 2010, 201012, 20101226, 2010122457, 201012245610, 20101224560848, 2010122456084687, 201012245608468521, 201012245608468519453, 201012245608468519428723, 201012245608468519428463029, 2010122456084685194284602619644
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(6)= floor [ 248163264/123456] = floor[2010.13530326594090202177293] = 2010.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ]
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(2^Range[n])]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,20}] (* Harvey P. Dale, Dec 30 2018 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002
More terms from Harvey P. Dale, Dec 30 2018

A038395 Concatenation of the first n odd numbers in reverse order.

Original entry on oeis.org

1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 191715131197531, 21191715131197531, 2321191715131197531, 252321191715131197531, 27252321191715131197531, 2927252321191715131197531, 312927252321191715131197531
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

Comments

a(n) starts with the digits of 2n-1. Indices of prime or probable prime terms are 1,2,37,62,409,...: see also A089922. - M. F. Hasler, Apr 13 2008
If n == 0 (mod 3), so is a(n). - Sergey Pavlov, Mar 29 2017

References

  • Mihaly Bencze [Beneze] and L. Tutescu, Some Notions and Questions in Number Theory, Sequence 3.

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@Join[Reverse[Range[1,n,2]]]]], {n,1,29,2}] (* Harvey P. Dale, Jun 02 2011 *)
  • PARI
    t=""; for( n=1,10^3, ( t=eval( Str( 2*n-1,t))) & print(n" "t)) \\ M. F. Hasler, Apr 13 2008
    
  • Python
    def a(n): return int("".join(map(str, range(2*n-1, 0, -2))))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Jan 31 2021

Extensions

Edited and extended by M. F. Hasler, Apr 13 2008
Edited by T. D. Noe, Oct 30 2008
Showing 1-10 of 14 results. Next