cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A072724 Integers which are exactly the concatenation of the first m even numbers (A019520) divided by their sum (A002378 = m^2+m).

Original entry on oeis.org

1, 4, 8227, 3427918353
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2002

Keywords

Comments

A probability argument suggests that this sequence may be finite.

Examples

			a(1) = 2/2 =1; a(2) = 24/(2+4) = 4; a(3) = 246810/(2+4+6+8+10) = 8227; a(4) = 246810121416/(2+4+6+8+10+12+14+16).
		

Crossrefs

Programs

  • Mathematica
    With[{eds=Range[2,1500,2]},Select[Table[FromDigits[Flatten[ IntegerDigits/@ Take[eds,n]]]/Total[Take[eds,n]],{n,502}],IntegerQ]] (* Harvey P. Dale, Nov 29 2011 *)

A019519 Concatenate odd numbers.

Original entry on oeis.org

1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719, 13579111315171921, 1357911131517192123, 135791113151719212325, 13579111315171921232527, 1357911131517192123252729, 135791113151719212325272931
Offset: 1

Views

Author

R. Muller

Keywords

References

  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Primes are in A048847, while their indices are in A046036.
Cf. A019520 (similar, with even numbers), A067095.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), 2*n-1))) end:
    seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nn=20;With[{odds=Range[1,2nn+1,2]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[odds,n]]],{n,nn}]] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    a(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ Michel Marcus, Dec 07 2021
  • Python
    def a(n): return int("".join(map(str, range(1, 2*n, 2))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 13 2021
    

Formula

Sequence grows like 10^K, where K = 2 + floor(log_10(n)) + floor(log_10(a(n-1))). More generally we may consider a(n)= F(a(n-1),n)*B^K + G(a(n-1),n); K = floor(log_B H(a(n-1),n)); F(a(n-1),n); G(a(n-1),n); H(a(n-1),n) integer polynomials; B integer. - Ctibor O. Zizka, Mar 08 2008
Lim_{n->oo} a(n)/A019520(n) = 0 (see A067095). - Bernard Schott, Dec 07 2021

Extensions

More terms from Erich Friedman
More terms from Harvey P. Dale, Aug 14 2014

A067095 a(n) = floor(X/Y) where X is the concatenation in increasing order of the first n even numbers and Y is that of the first n odd numbers.

Original entry on oeis.org

2, 1, 1, 1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

For n > 1, the sequence is increasing and tends to infinity. Proof: for k>=1, when the last concatenated integer at the numerator A019520(n) has k digits, then a(n) > 10^(k-1) (see Krusemeyer reference). - Bernard Schott, Dec 06 2021
Values taken by this function are in A349960. - Bernard Schott, Dec 18 2021

Examples

			a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1.
a(20000) = 18175.
		

References

  • Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ]
    With[{ev=Range[2,140,2],od=Range[1,139,2]},Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev,n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od,n]]]],{n,70}]] (* Harvey P. Dale, Aug 19 2011 *)
  • PARI
    ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520
    ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521
    a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021

Formula

a(n) = floor(A019520(n)/A019519(n)).

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A067096 Floor[X/Y] where X = concatenation in increasing order of first n even numbers and Y = that of first n natural numbers.

Original entry on oeis.org

2, 2, 2, 2, 19, 199, 1999, 19991, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916, 199916
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Comments

Almost all terms appear only once. However, in the first 5000 terms, the term 2 appears 4 times in a row; the term 199916 appears 41 times in a row; the term 19991620000261183803815753482837892477715440187362570807 appears 401 times in a row; and a term with 556 digits (that begins with the same digits as the term that appears 401 times in a row) appears 4001 times in a row. Does this pattern continue? - Harvey P. Dale, Jul 04 2012

Examples

			a(10) = floor[ 2468101214161820/12345678910] = floor[199916.20000441271803658143252326] = 199916.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 40} ]
    ccat[n_,i_]:=FromDigits[Flatten[IntegerDigits/@Range[i,n,i]]]; Table[ Floor[ ccat[2m,2]/ccat[m,1]],{m,40}] (* Harvey P. Dale, Jul 04 2012 *)

Extensions

More terms from Robert G. Wilson v, Jan 09 2002

A108728 Number of distinct prime divisors of concatenated even numbers.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 2, 3, 6, 5, 3, 4, 6, 4, 5, 4, 3, 5, 4, 7, 6, 5, 8, 3, 7, 4, 4, 8, 5, 7, 4, 4, 8, 5, 7, 6, 4, 8, 8, 7, 5, 3, 7, 4, 6, 10, 11, 5, 4, 10, 6, 5, 6, 5, 5, 4, 9, 4, 8, 9, 6, 5, 8, 4, 12, 5, 4, 8, 10, 5, 9, 7, 6, 8, 8, 5, 10, 5, 9, 7, 5, 5, 8, 3, 11, 6, 6, 7, 9, 10
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 21 2005

Keywords

Examples

			2 has 1 distinct prime divisors, so a(1) = 1.
24 has 2 distinct prime divisors, so a(2) = 2.
246 has 3 distinct prime divisors, so a(3) = 3.
		

Crossrefs

Cf. A001221, A019520, A105388 (number of divisors).

Programs

  • Mathematica
    a[n_] := PrimeNu @ FromDigits @ Flatten[IntegerDigits /@ (2*Range[n])]; Array[a, 30] (* Amiram Eldar, Jan 27 2020 *)

Formula

a(n) = A001221(A019520(n)). - Amiram Eldar, Jan 27 2020

Extensions

a(43)-a(52) from Amiram Eldar, Jan 27 2020
a(53)-a(54) from Jinyuan Wang, Jun 27 2020
a(55)-a(69) from Apurva Rai and Michael S. Branicky, Aug 16 2020
a(70)-a(71) from Max Alekseyev, Mar 21 2023
a(72)-a(89) from Tyler Busby, Mar 23 2023
a(90) from Tyler Busby, Apr 20 2024

A210734 Primes p such that p + 1 or p - 1 is a concatenation of successive even numbers starting from 2.

Original entry on oeis.org

3, 23, 2467, 246809, 246811, 24681012141619, 24681012141618202224262830323436384041, 24681012141618202224262830323436384042444649
Offset: 1

Views

Author

Arkadiusz Wesolowski, May 10 2012

Keywords

Comments

a(9) has 625 digits, a(10) has 1476 digits, a(11) has 5048 digits, a(12) has 39024 digits.

Crossrefs

Cf. A019520.

Programs

  • Mathematica
    lst = {}; c = 0; Do[c = c*10^IntegerLength[n] + n; a = c - 1; If[PrimeQ[a], AppendTo[lst, a]]; b = c + 1; If[PrimeQ[b], AppendTo[lst, b]], {n, 2, 48, 2}]; lst

A105388 Number of divisors of concatenated even numbers.

Original entry on oeis.org

2, 8, 8, 6, 32, 12, 4, 48, 96, 48, 8, 40, 64, 24, 32, 32, 12, 96, 16, 448, 64, 48, 256, 16, 192, 36, 24, 640, 32, 192, 16, 32, 256, 72, 256, 288, 16, 384, 256, 256, 32, 12, 128, 60, 160, 1536, 2048, 64, 16, 2304, 64, 64, 96, 72, 32, 48, 512, 24, 256, 1536, 64, 72, 768, 40, 4096, 48, 16, 512, 1024, 48, 1024
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 30 2005

Keywords

Examples

			The number of divisors of 24 is 8 - which is the second term.
The number of divisors of 246 is 8 - which is the third term.
The number of divisors of 2468 is 6 - which is the fourth term.
		

Crossrefs

Cf. A019520, A108728 (number of distinct prime divisors).

Programs

  • Mathematica
    Table[DivisorSigma[0,FromDigits[Flatten[IntegerDigits/@(2Range[n])]]],{n,30}] (* Harvey P. Dale, Dec 10 2016 *)

Extensions

More terms from Harvey P. Dale, Dec 10 2016
a(30)-a(69) from Michael S. Branicky, Feb 08 2021 (computed using prime factorizations linked in A108728)
Offset corrected and a(70)-a(71) added by Max Alekseyev, Mar 21 2023

A349960 Values taken by the function A067095 in the order of their appearance.

Original entry on oeis.org

2, 1, 18, 181, 1817, 18175, 181757, 1817571, 18175719, 181757197, 1817571972, 18175719727, 181757197277, 1817571972772, 18175719727727, 181757197277277, 1817571972772779, 18175719727727795, 181757197277277957, 1817571972772779572, 18175719727727795720, 181757197277277957202
Offset: 1

Views

Author

Bernard Schott, Dec 07 2021

Keywords

Comments

a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by Giorgos Kalogeropoulos; now, from this limit, it is possible to get the successive terms of this sequence here.

Examples

			Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
		

References

  • Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.

Crossrefs

Programs

  • Mathematica
    terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
    k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
    DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
  • Python
    def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # Chai Wah Wu, Dec 10 2021
    from itertools import count
    def A349960(n): # a more efficient implementation
        if n <= 2:
            return 3-n
        a, b = '', ''
        for i in count(1,2):
            a += str(i)
            b += str(i+1)
            ai, bi = int(a), int(b)
            if len(a)+n-2 == len(b): return bi//ai
            m = 10**(n-2-len(b)+len(a))
            lb = bi*m//(ai+1)
            ub = (bi+1)*m//ai
            if lb == ub: return lb # Chai Wah Wu, Dec 10 2021

Formula

a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - Giorgos Kalogeropoulos, Dec 10 2021

Extensions

a(5)-a(7) from Michel Marcus, Dec 07 2021
a(8)-a(9) from Martin Ehrenstein, Dec 10 2021
a(10)-a(22) from Chai Wah Wu, Dec 10 2021

A333183 Number of digits in concatenation of first n positive even integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154
Offset: 1

Views

Author

Alexander Goebel, Mar 10 2020

Keywords

Comments

Connected with A019520 and A038396, similar to how A058183 applies to both A007908 and A000422 to count the digits in them, as the order of the digits does not matter (2468 returns the same result as 8642).

Examples

			For example, a(5) = 6 because 246810 (the concatenation of the first five positive even integers) has six digits.
		

Crossrefs

Programs

Formula

a(n) = A058183(n) - Sum_{1..A058183(n)} A000035(A058183(n)).
a(n) = Sum_{i=1..n} (1+floor(log_10(2*i))). - Robert Israel, Apr 05 2020

A286661 Primes of form A038396(n) - 1 or A038396(n) + 1.

Original entry on oeis.org

3, 41, 43, 641, 643, 8641, 108643, 18161412108641, 525048464442403836343230282624222018161412108643, 646260585654525048464442403836343230282624222018161412108641
Offset: 1

Views

Author

XU Pingya, May 12 2017

Keywords

Comments

a(11) = A038396(42) + 1 = 84...43, a(12) = A038396(54) + 1 = 108...43;
a(13) = A038396(185) + 1 = 370...43, a(14) = A038396(199) - 1 = 398...41;
a(15) = A038396(224) + 1 = 448...43, a(16) = A038396(248) - 1 = 496...41;
a(17) = A038396(346) - 1 = 692...41, a(18) = A038396(947) - 1 = 1894...41.
a(19) (if it exists) will be more than A038396(3000).
a(2) and a(3) are a pair of twin primes, a(4) and a(5) also.

Crossrefs

Programs

  • Mathematica
    Select[#, PrimeQ] &@ Flatten@ Table[{# - 1, # + 1} &@ FromDigits@ Flatten@ Reverse@ Take[#, n], {n, Length@ #}] &@ Array[IntegerDigits[2 #] &, 40] (* Michael De Vlieger, May 14 2017 *)
Showing 1-10 of 11 results. Next