cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A019519 Concatenate odd numbers.

Original entry on oeis.org

1, 13, 135, 1357, 13579, 1357911, 135791113, 13579111315, 1357911131517, 135791113151719, 13579111315171921, 1357911131517192123, 135791113151719212325, 13579111315171921232527, 1357911131517192123252729, 135791113151719212325272931
Offset: 1

Views

Author

R. Muller

Keywords

References

  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

Primes are in A048847, while their indices are in A046036.
Cf. A019520 (similar, with even numbers), A067095.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=1, 1, parse(cat(a(n-1), 2*n-1))) end:
    seq(a(n), n=1..20); # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nn=20;With[{odds=Range[1,2nn+1,2]},Table[FromDigits[Flatten[ IntegerDigits/@ Take[odds,n]]],{n,nn}]] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    a(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ Michel Marcus, Dec 07 2021
  • Python
    def a(n): return int("".join(map(str, range(1, 2*n, 2))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 13 2021
    

Formula

Sequence grows like 10^K, where K = 2 + floor(log_10(n)) + floor(log_10(a(n-1))). More generally we may consider a(n)= F(a(n-1),n)*B^K + G(a(n-1),n); K = floor(log_B H(a(n-1),n)); F(a(n-1),n); G(a(n-1),n); H(a(n-1),n) integer polynomials; B integer. - Ctibor O. Zizka, Mar 08 2008
Lim_{n->oo} a(n)/A019520(n) = 0 (see A067095). - Bernard Schott, Dec 07 2021

Extensions

More terms from Erich Friedman
More terms from Harvey P. Dale, Aug 14 2014

A048847 Primes formed by concatenation of first k odd numbers.

Original entry on oeis.org

13, 135791113151719, 135791113151719212325272931, 135791113151719212325272931333537394143454749515355575961636567
Offset: 1

Views

Author

N. J. A. Sloane, Charles T. Le (charlestle(AT)yahoo.com)

Keywords

Comments

The next term (a(5)) has 93 digits. - Harvey P. Dale, Mar 05 2013
a(6) has 9725 digits (see A066811(6) or A046036(6)). - Michel Marcus, Jan 31 2014

References

  • R. W. Stephan, Factors and Primes in Two Smarandache Sequences, Smarandache Notions Journal, second edition, Vol. 9, No. 1-2, 1998, 5-11.

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@Range[1,2n+1,2]]],{n,40}], PrimeQ] (* Harvey P. Dale, Mar 05 2013 *)

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A066811 Numbers k such that the concatenation of odd numbers from 1 to k is a prime.

Original entry on oeis.org

3, 19, 31, 67, 97, 5139
Offset: 1

Views

Author

Patrick De Geest, Jan 20 2002

Keywords

Comments

a(7) > 50000. - Michael S. Branicky, Aug 28 2025

Examples

			19 is a term because 135791113151719 is a prime.
		

Crossrefs

Programs

  • Mathematica
    p = ""; Do[p = p <> ToString[2*n+1]; If[PrimeQ[ToExpression[p]], Print[2*n+1]], {n, 0, 2569}] (* Ryan Propper, Aug 26 2005 *)
  • Python
    from sympy import isprime
    def agen():
      k, str1tok = 1, '1'
      while True:
        if isprime(int(str1tok)): yield k
        k, str1tok = k + 2, str1tok + str(k + 2)
    g = agen()
    print([next(g) for i in range(5)]) # Michael S. Branicky, Mar 19 2021

Formula

a(n) = 2*A046036(n) - 1. - Michel Marcus, Jan 31 2014

Extensions

a(6) from Ryan Propper, Aug 26 2005

A138965 Least prime factor of concatenation of first n odd numbers.

Original entry on oeis.org

1, 13, 3, 23, 37, 3, 11617, 5, 3, 135791113151719, 29, 3, 5, 11, 3, 135791113151719212325272931, 17, 3, 7, 13, 3, 131, 5, 3, 11, 25471443030907588399109, 3, 5, 7, 3, 181, 41, 3, 135791113151719212325272931333537394143454749515355575961636567, 19, 3, 40351, 5, 3, 7, 11, 3, 5, 57041, 3, 351269, 11, 3, 135791113151719212325272931333537394143454749515355575961636567697173757779818385878991939597
Offset: 1

Views

Author

M. F. Hasler, Apr 14 2008

Keywords

Crossrefs

Programs

  • PARI
    t=1; for( n=2,99, print1( factor( eval( t=Str( t,2*n-1 )))[1,1], ", "))

Formula

A138965(n) = A020639(A019519(n)) (= 3 if n = 0 (mod 3)).
Showing 1-4 of 4 results.