cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066700 The leading digits in the terms in A067103 converge; dividing by a suitable power of 10 they converge to the number shown below; sequence gives continued fraction for this number.

Original entry on oeis.org

1, 2, 12, 4, 34, 1, 22, 1, 4, 1, 1, 2, 1, 1, 17, 16, 3, 1, 1, 2, 1, 1, 1, 5, 1, 1, 3, 3, 14, 2, 107, 1, 1, 8, 5, 4, 7, 1, 4, 1, 6, 3, 19, 3, 1, 1, 2, 3, 5, 76, 1, 1, 2, 1, 1, 90, 2, 2, 48717, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 14, 2, 1, 1, 2, 4, 28, 2, 3, 46, 1, 1, 3, 1, 1, 1, 2, 1, 5, 12, 1, 1, 3, 3, 1, 2, 3, 1, 78, 1, 1, 1, 3, 2, 4, 1, 6, 1, 1, 1048, 1, 3, 1, 1, 2, 3, 4, 1, 2, 4, 3, 8, 1, 12, 5, 1, 1, 7, 1, 11, 11, 1, 118, 6, 1, 2, 1, 5, 3, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 3, 5, 4, 1, 12, 147838832589501802758390, 1, 10, 1, 1, 1, 2, 4, 6, 10, 2, 8, 1, 2, 1, 1, 7, 1, 1, 1, 3, 9, 1, 1, 1, 55, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Randall L Rathbun, Jan 12 2002

Keywords

Examples

			1.480389426511475059423875475946678140937510326102334419703757169...
		

Crossrefs

For a more dramatic continued fraction see A030167.

Programs

  • PARI
    {A067103(n)= c=0; d=0; for(i=1,n, c=c*10^(1+floor(3*log(i)/log(10)))+i^3; d=d*10^(1+floor(log(i)/log(10)))+i; ); floor(c/d) }
    
  • PARI
    c1(n) = my(s=""); for(k=1, n, s=Str(s, k)); eval(s); \\ A007908
    c3(n) = my(s=""); for(k=1, n, s=Str(s, k^3)); eval(s); \\ A019522
    lista() = my(nn=1000); default(realprecision, 1000); my(x=c3(nn)\c1(nn)); x = x/10.^(#Str(x)-1); contfrac(x); \\ Michel Marcus, May 25 2022

A067104 a(n) = floor[ X/Y], where X = concatenation of first n factorials and Y = concatenation of first n natural numbers.

Original entry on oeis.org

1, 1, 1, 10, 1022, 102256, 102255452, 1022553862210, 102255378766606673, 10225537868377981588347, 10225537868286872045185666318, 102255378682858781228966381713174081, 10225537868285867355405173700779791589867289
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(5) = floor [12624120/12345] = floor[1022.60996354799513973268529769137] = 1022.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[FromDigits[Flatten[IntegerDigits/@(Range[n]!)]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Jun 09 2020 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by Charles R Greathouse IV, Apr 27 2010

A067105 a(n) = floor[ X/Y], where X = concatenation of k^k from 1 up to n^n and Y = concatenation of 1, ..., n.

Original entry on oeis.org

1, 1, 11, 1156, 1156141, 11560850121, 1156078457100065, 11560777079611640798854, 1156077623683098402586161358986, 1156077622746675519639905953267558458549
Offset: 1

Views

Author

Amarnath Murthy, Jan 07 2002

Keywords

Examples

			a(5) = floor [14272563125/12345] = floor[1156141.20089104900769542324827866] = 1156141.
		

Crossrefs

Programs

  • Mathematica
    fxy[n_]:=Module[{num=FromDigits[Flatten[IntegerDigits/@(Table[x^x,{x,n}])]], den=FromDigits[Flatten[IntegerDigits/@Range[n]]]},Floor[num/den]]; Array[ fxy,10] (* Harvey P. Dale, Mar 21 2013 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
Edited by Charles R Greathouse IV, Apr 28 2010
Showing 1-3 of 3 results.