cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A067184 Numbers n such that sum of the squares of the prime factors of n equals the sum of the squares of the digits of n.

Original entry on oeis.org

2, 3, 5, 7, 250, 735, 792, 2500, 4992, 9075, 11760, 25000, 30625, 67914, 91476, 117600, 185625, 187278, 250000, 264992, 523908, 630784, 855360, 1082565, 1176000, 2395008, 2500000, 2546775, 2898350, 3608550, 3833280, 4299750, 4790016, 5899068, 8553600, 9243850
Offset: 1

Views

Author

Joseph L. Pe, Feb 18 2002

Keywords

Comments

From David A. Corneth, Sep 28 2019: (Start)
If 10*m is in the sequence then so is 100*m.
The sum of squares of digits of a k-digit number is at most 81*k. Therefore any term with at most k digits is p-smooth where p is the largest prime < (81*k)^(1/2). (End)

Examples

			The prime factors of 4992 are 2,3,13, the sum of whose squares = 182 = sum of the squares of 4,9,9,2; so 4992 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{a, l, t, r}, a = FactorInteger[n]; l = Length[a]; t = Table[a[[i]][[1]], {i, 1, l}]; r = Sum[(t[[i]])^2, {i, 1, l}]]; g[n_] := Module[{b, m, s}, b = IntegerDigits[n]; m = Length[b]; s = Sum[(b[[i]])^2, {i, 1, m}]]; Select[Range[2, 10^5], f[ # ] == g[ # ] &]
    Select[Range[2,4300000],Total[Transpose[FactorInteger[#]][[1]]^2]== Total[ IntegerDigits[#]^2]&] (* Harvey P. Dale, Sep 01 2011 *)

Extensions

a(16)-a(32) from Donovan Johnson, Sep 29 2009
Showing 1-1 of 1 results.