A067184 Numbers n such that sum of the squares of the prime factors of n equals the sum of the squares of the digits of n.
2, 3, 5, 7, 250, 735, 792, 2500, 4992, 9075, 11760, 25000, 30625, 67914, 91476, 117600, 185625, 187278, 250000, 264992, 523908, 630784, 855360, 1082565, 1176000, 2395008, 2500000, 2546775, 2898350, 3608550, 3833280, 4299750, 4790016, 5899068, 8553600, 9243850
Offset: 1
Examples
The prime factors of 4992 are 2,3,13, the sum of whose squares = 182 = sum of the squares of 4,9,9,2; so 4992 is a term of the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..14898 (terms < 10^20)
Programs
-
Mathematica
f[n_] := Module[{a, l, t, r}, a = FactorInteger[n]; l = Length[a]; t = Table[a[[i]][[1]], {i, 1, l}]; r = Sum[(t[[i]])^2, {i, 1, l}]]; g[n_] := Module[{b, m, s}, b = IntegerDigits[n]; m = Length[b]; s = Sum[(b[[i]])^2, {i, 1, m}]]; Select[Range[2, 10^5], f[ # ] == g[ # ] &] Select[Range[2,4300000],Total[Transpose[FactorInteger[#]][[1]]^2]== Total[ IntegerDigits[#]^2]&] (* Harvey P. Dale, Sep 01 2011 *)
Extensions
a(16)-a(32) from Donovan Johnson, Sep 29 2009
Comments