cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067176 A triangle of generalized Stirling numbers: sum of consecutive terms in the harmonic sequence multiplied by the product of their denominators.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 11, 5, 1, 0, 50, 26, 7, 1, 0, 274, 154, 47, 9, 1, 0, 1764, 1044, 342, 74, 11, 1, 0, 13068, 8028, 2754, 638, 107, 13, 1, 0, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 0, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 0, 10628640
Offset: 0

Views

Author

Henry Bottomley, Jan 09 2002

Keywords

Comments

In the Coupon Collector's Problem with n types of coupon, the expected number of coupons required until there are only k types of coupon uncollected is a(n,k)*k!/(n-1)!.
If n+k is even, then a(n,k) is divisible by (n+k+1). For n>=k and k>= 0, a(n,k) = (n-k)!*H(k+1,n-k), where H(m,n) is a generalized harmonic number, i.e., H(0,n) = 1/n and H(m,n) = Sum_{j=1..n} H(m-1,j). - Leroy Quet, Dec 01 2006
This triangle is the same as triangle A165674, which is generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n), minus the first right hand column. - Johannes W. Meijer, Oct 16 2009

Examples

			Rows start 0; 1,0; 3,1,0; 11,5,1,0; 50,26,7,1,0; 274,154,47,9,1,0 etc. a(5,2) = 3*4*5*(1/3 + 1/4 + 1/5) = 4*5 + 3*5 + 3*4 = 20 + 15 + 12 = 47.
		

Crossrefs

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := T[n, k] = Sum[ i*k^(i - 1)*Abs[StirlingS1[n - k, i]], {i, 1, n - k}]; Table[T[n,k], {n,1,10}, {k,1,n}] (* G. C. Greubel, Jan 21 2017 *)

Formula

a(n, k) = (n!/k!)*Sum_{j=k+1..n} 1/j = (A000254(n) - A000254(k)*A008279(n, n-k))/A000142(k) = a(n-1, k)*n + (n-1)!/k! = (a(n, k-1)-n!/k!)/k.
a(n, k) = Sum_{i=1..n-k} i*k^(i-1)*abs(stirling1(n-k, i)). - Vladeta Jovovic, Feb 02 2003