cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067259 Cubefree numbers which are not squarefree.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 36, 44, 45, 49, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 100, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 180, 188, 196, 198, 204, 207, 212, 220, 225, 228
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2002

Keywords

Comments

a(n)=m iff A051903(m)=2.
The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... - Amiram Eldar, Jul 09 2020

Crossrefs

Programs

  • Haskell
    a067259 n = a067259_list !! (n-1)
    a067259_list = filter ((== 2) . a051903) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Mathematica
    f[n_]:=Union[Last/@FactorInteger[n]][[ -1]]; lst={}; Do[If[f[n]==2,AppendTo[lst,n]],{n,2,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
    Select[Range[500], Not[SquareFreeQ[#]] && FreeQ[FactorInteger[#], {,k /;k>2}]&] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    is(n)=n>3 && vecmax(factor(n)[,2])==2 \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A067259(n):
        def f(x): return n+x+sum(mobius(k)*(x//k**2-x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,3)[0]+1,isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A212793(a(n)) * (1 - A008966(a(n))) = 1. - Reinhard Zumkeller, May 27 2012

Extensions

Unrelated comment removed by Jason Yuen, Apr 04 2025