A067259 Cubefree numbers which are not squarefree.
4, 9, 12, 18, 20, 25, 28, 36, 44, 45, 49, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 100, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 180, 188, 196, 198, 204, 207, 212, 220, 225, 228
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Cubefree
- Eric Weisstein's World of Mathematics, Squarefree
Programs
-
Haskell
a067259 n = a067259_list !! (n-1) a067259_list = filter ((== 2) . a051903) [1..] -- Reinhard Zumkeller, May 27 2012
-
Mathematica
f[n_]:=Union[Last/@FactorInteger[n]][[ -1]]; lst={}; Do[If[f[n]==2,AppendTo[lst,n]],{n,2,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) Select[Range[500], Not[SquareFreeQ[#]] && FreeQ[FactorInteger[#], {,k /;k>2}]&] (* Vaclav Kotesovec, Jul 09 2020 *)
-
PARI
is(n)=n>3 && vecmax(factor(n)[,2])==2 \\ Charles R Greathouse IV, Oct 15 2015
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A067259(n): def f(x): return n+x+sum(mobius(k)*(x//k**2-x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))+sum(mobius(k)*(x//k**2) for k in range(integer_nthroot(x,3)[0]+1,isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 05 2024
Formula
Extensions
Unrelated comment removed by Jason Yuen, Apr 04 2025
Comments