cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A071318 Lesser of 2 consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that both k and k+1 are in A067259.

Original entry on oeis.org

44, 49, 75, 98, 99, 116, 147, 171, 244, 260, 275, 315, 332, 363, 387, 475, 476, 507, 524, 531, 548, 549, 603, 604, 636, 692, 724, 725, 747, 764, 774, 819, 844, 845, 846, 867, 908, 924, 931, 963, 980, 1035, 1075, 1083, 1179, 1196, 1251, 1274, 1275, 1324
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 5, 41, 407, 4125, 41215, 412331, 4123625, 41236308, ... . Apparently, the asymptotic density of this sequence exists and equals 0.041236... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 2/p^3) - 2 * Product_{p prime} (1 - 1/p^2 - 1/p^3) + Product_{p prime} (1 - 2/p^2) = 0.041236147082334172926... . - Amiram Eldar, Jan 05 2024

Examples

			75 is a term since 75 = 3*5^2 and 76 = 2^2*19.
		

Crossrefs

Programs

  • Haskell
    a071318 n = a071318_list !! (n-1)
    a071318_list = [x | x <- [1..],  a212793 x == 1, a008966 x == 0,
                        let y = x+1, a212793 y == 1, a008966 y == 0]
    -- Reinhard Zumkeller, May 27 2012
    
  • Mathematica
    With[{s = Select[Range[1350], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ Position[t, 1][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2); \\ Michel Marcus, Aug 02 2017

Formula

A051903(k) = A051903(k+1) = 2 when k is a term.

A071319 First of 3 consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2} are in A067259.

Original entry on oeis.org

98, 475, 548, 603, 724, 844, 845, 1274, 1420, 1681, 1682, 1924, 2275, 2523, 2890, 3283, 3474, 3548, 3626, 3716, 4148, 4203, 4418, 4475, 4850, 4923, 4948, 5202, 5274, 5490, 5524, 5634, 5948, 6650, 6811, 6956, 7299, 7324, 7442, 7514, 7675, 8107, 8348
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 1, 7, 55, 570, 5628, 56174, 562151, 5621119, 56209006, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00562... . - Amiram Eldar, Jan 18 2023
The asymptotic density of this sequence is Product_{p prime} (1 - 3/p^3) - 3 * Product_{p prime} (1 - 1/p^2 - 2/p^3) + 3 * Product_{p prime} (1 - 2/p^2 - 1/p^3) - Product_{p prime} (1 - 3/p^2) = 0.0056209097169531390208... . - Amiram Eldar, Jan 12 2024

Examples

			98 is a term since 98 = 2*7^2, 99 = 3^2*11, and 100 = 2^2*5^2.
		

Crossrefs

Subsequence of A067259 and A071318.

Programs

  • Mathematica
    With[{s = Select[Range[10^4], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2) && (vecmax(factor(n+2)[, 2])==2); \\ Michel Marcus, Aug 02 2017

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = 2 when k is a term.

A336594 Numbers k such that k/A008835(k) is cubefree but not squarefree (A067259), where A008835(k) is the largest 4th power dividing k.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 36, 44, 45, 49, 50, 52, 60, 63, 64, 68, 75, 76, 84, 90, 92, 98, 99, 100, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 180, 188, 192, 196, 198, 204, 207, 212, 220, 225, 228, 234, 236, 242, 244
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

Numbers such that at least one of the exponents in their prime factorization is of the form 4*m + 2, and none are of the form 4*m + 3.
The asymptotic density of this sequence is zeta(4) * (1/zeta(3) - 1/zeta(2)) = Pi^4/(90*zeta(3)) - Pi^2/15 = 0.2424190509... (Cohen, 1963).

Examples

			4 is a term since the largest 4th power dividing 4 is 1, and 4/1 = 4 = 2^2 is cubefree but not squarefree.
64 is a term since the largest 4th power dividing 64 is 16, and 64/16 = 4 = 2^2 is cubefree but not squarefree.
		

Crossrefs

Complement of A336593 within A252849.
A030140 is a subsequence.

Programs

  • Mathematica
    Select[Range[250], Max[Mod[FactorInteger[#][[;; , 2]], 4]] == 2 &]

A071125 Least starting number initiating cubefree but nonsquarefree chain of consecutive integers with length n {j,j+1,...,j+n-1}; i.e., start of n consecutive numbers in A067259.

Original entry on oeis.org

4, 44, 98, 844, 30923, 671346, 8870025
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

Sequence is complete: multiples of 8 are not cubefree. - Donovan Johnson, Apr 27 2008

Examples

			n = 671346 = 2*3*3*13*19*151;
n = 671347 = 17*17*23*101;
n = 671348 = 2*2*47*3571;
n = 671349 = 3*7*7*4567;
n = 671350 = 2*5*5*29*463;
n = 671351 = 53*53*239.
		

Crossrefs

Formula

A051903(a(n) + j) = 2 for j = 0, 1, ..., (n-1).

Extensions

a(7) from Donovan Johnson, Apr 27 2008

A071320 Least of four consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2, k+3} are in A067259.

Original entry on oeis.org

844, 1681, 8523, 8954, 10050, 10924, 11322, 17404, 19940, 22020, 23762, 24450, 25772, 27547, 30923, 30924, 33172, 34347, 38724, 39050, 39347, 40050, 47673, 47724, 47825, 49147, 54585, 55449, 57474, 58473, 58849, 58867, 59924, 62865
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 0, 1, 4, 57, 555, 5492, 55078, 551443, 5512825, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000551... . - Amiram Eldar, Jan 18 2023

Examples

			k = 844 is a term since 844 = 2^2*211, k+1 = 845 = 5*13^2, k+2 = 846 = 2*3^2*47, and k+4 = 847 = 7*11^2.
		

Crossrefs

Subsequence of A067259, A071318 and A071319.

Programs

  • Mathematica
    With[{s = Select[Range[10^5], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = A051903(k+3) = 2 when k is a term.

A071124 Least of five consecutive numbers which are cubefree and not squarefree, i.e., {k, k+1, k+2, k+3, k+4} are in A067259.

Original entry on oeis.org

30923, 74849, 96675, 145674, 152339, 204323, 230346, 240425, 255186, 274547, 276650, 338921, 361322, 430073, 432474, 527922, 574674, 671346, 671347, 675491, 697073, 801473, 808155, 826825, 826826, 915857, 939321, 978675, 998522
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Examples

			30923 = 17*17*107;
30924 = 2*2*3*3*859;
30925 = 5*5*1237;
30926 = 2*7*47*47;
30927 = 3*13*13*61.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Select[Range[10^6], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = A051903(k+3) = A051903(k+4) = 2.

A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Steven Finch, Jun 14 1998

Keywords

Comments

Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

Crossrefs

Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.

Programs

  • Haskell
    a004709 n = a004709_list !! (n-1)
    a004709_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA004709 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) > 2 then
                return false;
            end if;
        end do:
        true ;
    end proc:
  • Mathematica
    Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( cvecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) == n
    print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A004709(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A360014 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximum of the other exponents.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 30, 34, 36, 38, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222, 226, 230, 238, 246, 252
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) = A051903(A000265(k)).
This sequence is a disjoint union of {1}, the even squarefree numbers (A039956), and the subsequences of even k-free numbers that are not (k-1)-free, for k >= 3. These subsequences include, for k = 3, numbers of the form 4*o where o is an odd cubefree number that is not squarefree (i.e., an odd term of A067259).
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} (k-2)/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 1.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.

Crossrefs

Programs

  • Mathematica
    q[n_] := 2^(e = IntegerExponent[n, 2]) < n && e == Max[FactorInteger[n/2^e][[;; , 2]]]; q[1] = True; Select[Range[250], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); n == 1 ||(m > 1 && e == vecmax(factor(m)[,2]))};

A072357 Cubefree nonsquares whose factorization into a product of primes contains exactly one square.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 188, 198, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279, 284, 292, 294, 306, 308
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 18 2002

Keywords

Comments

Numbers n such that A001222(n) - A001221(n) = 1 and A001221(n)>1.
Numbers with one or more 1's, exactly one 2 and no 3's or higher in their prime exponents. - Antti Karttunen, Sep 19 2019
From Salvador Cerdá, Mar 08 2016: (Start)
12!+1 = 13^2 * 2834329 is in this sequence.
23!+1 = 47^2 * 79 * 148139754736864591 is also in this sequence. (End)
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} 1/(p*(p+1)) (A271971). - Amiram Eldar, Nov 09 2020

Examples

			a(14) = 84 = 7*3*2^2; the following numbers are not terms: 36=6^2, as it is a square; 54=2*3^3, as it is not cubefree; 42=2*3*7, as there is no squared prime; 72=2*6^2, as 72 has two squared prime divisors: 2^2 and 3^2.
		

Crossrefs

Cf. A001221, A001222, A054753 (subsequence), A271971, A325981 (conjectured subsequence).
Subsequence of: A004709, A048107, A060687, A067259.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [$2..floor(N^(1/2))]):
    SF:= select(numtheory:-issqrfree, [$2..N/4]):
    S:= {seq(op(map(p -> p^2*t, select(s -> igcd(s,t)=1 and s^2*t <= N, Primes))), t = SF)}:
    sort(convert(S,list)); # Robert Israel, Mar 08 2016
  • Mathematica
    Select[Range@ 308, And[PrimeNu@ # > 1, PrimeOmega@ # - PrimeNu@ # == 1] &] (* Michael De Vlieger, Mar 09 2016 *)
  • PARI
    isok(n) = (omega(n) > 1) && (bigomega(n) - omega(n) == 1); \\ Michel Marcus, Jul 16 2015
Showing 1-10 of 35 results. Next