A067268 Numbers k such that k and k^2+1 have the same number of distinct prime factors.
2, 4, 12, 15, 16, 18, 22, 28, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 58, 62, 65, 68, 69, 76, 80, 82, 85, 86, 88, 92, 95, 96, 100, 104, 105, 106, 108, 118, 132, 136, 138, 141, 144, 145, 152, 158, 159, 164, 166, 171, 174, 175, 178, 188, 194, 196, 201, 202, 205
Offset: 1
Examples
2 is a term since omega(2) = omega(2^2+1) = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [1.. 210 ]| #PrimeDivisors(k) eq #PrimeDivisors(k^2+1)]; // Marius A. Burtea, Feb 18 2020
-
Mathematica
Select[Range[250],PrimeNu[#]==PrimeNu[#^2+1]&] (* Harvey P. Dale, Feb 07 2019 *)
Formula
Numbers k such that omega(k) = omega(k^2+1).