A067274 Number of ordered integer pairs (b,c), with -n<=b<=n, -n<=c<=n, such that both roots of x^2+bx+c=0 are integers.
1, 4, 10, 16, 25, 31, 41, 47, 57, 66, 76, 82, 96, 102, 112, 122, 135, 141, 155, 161, 175, 185, 195, 201, 219, 228, 238, 248, 262, 268, 286, 292, 306, 316, 326, 336, 357, 363, 373, 383, 401, 407, 425, 431, 445, 459, 469, 475, 497, 506, 520, 530, 544, 550, 568
Offset: 0
Keywords
Links
- Eric M. Schmidt, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Quadratic Equation
Crossrefs
Cf. A010052.
Programs
-
Mathematica
a[n_] := If[n >= 1, 2 Sum[Length[Divisors[k]], {k, n}] + Floor[Sqrt[n]] + 2 n - 1]; Join[{1}, Table[a[n], {n, 50}]] (* Lorenz H. Menke, Jr., Apr 13 2016 *)
-
Sage
def A067274(max) : res = [1] term = 4 for ii in range(1, max+1) : res += [term] term += 2 * (number_of_divisors(ii+1) + 1) + is_square(ii+1) return res # Eric M. Schmidt, Aug 19 2012
Formula
a(n) = a(n-1)+2*(tau(n)+1)+A010052(n), n>1, a(1) = 4. - Vladeta Jovovic, Mar 05 2002, edited by Eric M. Schmidt, Aug 19 2012
Comments