cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A069274 13-almost primes (generalization of semiprimes).

Original entry on oeis.org

8192, 12288, 18432, 20480, 27648, 28672, 30720, 41472, 43008, 45056, 46080, 51200, 53248, 62208, 64512, 67584, 69120, 69632, 71680, 76800, 77824, 79872, 93312, 94208, 96768, 100352, 101376, 103680, 104448, 107520, 112640, 115200
Offset: 1

Views

Author

Rick L. Shepherd, Mar 13 2002

Keywords

Comments

Product of 13 not necessarily distinct primes.
Divisible by exactly 13 prime powers (not including 1).

Crossrefs

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011

Programs

  • Mathematica
    Select[Range[30000], Plus @@ Last /@ FactorInteger[ # ] == 13 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
    Select[Range[116000],PrimeOmega[#]==13&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    k=13; start=2^k; finish=130000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A067274(n):
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))
        return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024

Formula

Product p_i^e_i with Sum e_i = 13.

A091627 Number of ordered integer pairs (b,c) with 1 <= b,c <= n such that both roots of x^2+bx+c=0 are integers.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 21, 23, 26, 27, 30, 31, 34, 36, 38, 39, 43, 45, 47, 49, 52, 53, 57, 58, 61, 63, 65, 67, 72, 73, 75, 77, 81, 82, 86, 87, 90, 93, 95, 96, 101, 103, 106, 108, 111, 112, 116, 118, 122, 124, 126, 127, 133, 134, 136, 139, 143
Offset: 0

Views

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Also number of ordered pairs of positive integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021

Crossrefs

Programs

  • Mathematica
    Accumulate[ Join[{0, 0}, Table[ Ceiling[ DivisorSigma[0, n]/2], {n, 2, 64}]]]  (* Jean-François Alcover, Oct 23 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
    
  • PARI
    N=66; x='x+O('x^N); concat([0, 0], Vec((-x+sum(k=1, sqrtint(N), x^k^2/(1-x^k)))/(1-x))) \\ Seiichi Manyama, Sep 04 2021
    
  • Python
    from math import isqrt
    def A091627(n):
        m = isqrt(n)
        return 0 if n == 0 else sum(n//k for k in range(1, m+1))-m*(m-1)//2-1 # Chai Wah Wu, Oct 07 2021

Formula

a(n) = A091626(n) - n - 1. a(n) = a(n-1) + ceiling(tau(n)/2), n>1. Partial sums of A038548. - Vladeta Jovovic, Jun 12 2004
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} x^(k^2)/(1 - x^k)). - Seiichi Manyama, Sep 04 2021

A091626 Number of ordered integer pairs (b,c) with 0 <= b, c <= n such that both roots of x^2+bx+c=0 are integers.

Original entry on oeis.org

1, 2, 4, 6, 9, 11, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 43, 45, 49, 51, 55, 58, 61, 63, 68, 71, 74, 77, 81, 83, 88, 90, 94, 97, 100, 103, 109, 111, 114, 117, 122, 124, 129, 131, 135, 139, 142, 144, 150, 153, 157, 160, 164, 166, 171, 174, 179, 182, 185, 187
Offset: 0

Views

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Also number of ordered pairs of nonnegative integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021

Examples

			The six quadratics for a(3)=6 and their roots are as follows:
x^2 + 0*x + 0; x=0.
x^2 + 1*x + 0; x=0, x=-1.
x^2 + 2*x + 0; x=0, x=-2.
x^2 + 2*x + 1; x=-1.
x^2 + 3*x + 0; x=0, x=-3.
x^2 + 3*x + 2; x=-1, x=-2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n-1] + Ceiling[ DivisorSigma[0, n]/2] + 1; a[0]=1; a[1]=2; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Nov 08 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = sum(i=0, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
    
  • Python
    from math import isqrt
    def A091626(n):
        m = isqrt(n)
        return 1 if n == 0 else n+sum(n//k for k in range(1, m+1))-m*(m-1)//2 # Chai Wah Wu, Oct 07 2021

Formula

a(n) = a(n-1) + ceiling(tau(n)/2) + 1, n>1. - Vladeta Jovovic, Jun 12 2004
a(n) = n + floor(sqrt(n))/2 + A006218(n)/2, n>0. - Griffin N. Macris, Jun 14 2016

A379597 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a nonnegative discriminant.

Original entry on oeis.org

1, 4, 12, 24, 50, 80, 134, 192, 276, 366, 510, 632, 834, 1018, 1262, 1502, 1858, 2136, 2584, 2956, 3448, 3910, 4576, 5076, 5834, 6488, 7320, 8066, 9136, 9892, 11118, 12114, 13358, 14482, 15978, 17108, 18862, 20272, 22024, 23532, 25700, 27216, 29600, 31486, 33746
Offset: 1

Views

Author

Felix Huber, Feb 18 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and nonnegative discriminant v^2 - 4*u*w have two real solutions.
a(n) is even for n >= 2.

Examples

			a(3) = 12 because there are 12 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a nonnegative discriminant: (u, v, w) = (1, 0, 0), (1, -1, 0), (1, 1, 0), (1, 0, -1), (1, -1, -1), (1, 1, -1), (1, -2, 0), (1, 2, 0), (1, 0, -2), (2, -1, 0), (2, 1, 0), and (2, 0, -1). Multiplied equations like 2*(1, 0, 0) = (2, 0, 0) or (-1)*(1, -1, 0) = (-1, 1, 0) do not have a distinct solution set.
		

Crossrefs

Programs

  • Maple
    A379597:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;	
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 then
                   if v=0 then
                      a:=a+1
                   elif w=0 or w>=v^2/(4*u) then
                      a:=a+2
                   else
                      a:=a+4
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A379597(n),n=1..45);

A381710 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a negative discriminant.

Original entry on oeis.org

0, 1, 5, 11, 25, 39, 69, 99, 143, 189, 265, 327, 437, 529, 653, 777, 965, 1107, 1343, 1531, 1783, 2021, 2367, 2619, 3013, 3343, 3771, 4153, 4707, 5087, 5721, 6229, 6865, 7437, 8197, 8767, 9677, 10391, 11279, 12043, 13155, 13919, 15147, 16101, 17249, 18301, 19763
Offset: 1

Views

Author

Felix Huber, Mar 06 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and negative discriminant v^2 - 4*u*w have two complex solutions.
a(n) is odd for n >= 2.

Examples

			a(3) = 5 because there are 5 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a negative discriminant: (u, v, w) = (1, 0, 1), (1, -1, 1), (1, 1, 1), (1, 0, 2), (2, 0, 1). Multiplied equations like (-1)*(1, -1, 1) = (-1, 1, -1) do not have a distinct solution set.
		

Crossrefs

Programs

  • Maple
    A381710:=proc(n)
       option remember;
       local a,u,v,w;
          if n=1 then
          0
       else
          a:=0;
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                   if igcd(u,v,w)=1 then
                      if v=0 then
                         a:=a+1
                      elif w>v^2/(4*u) then
                        a:=a+2
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A381710(n),n=1..47);

A381711 a(n) = A379597(n) - A381710(n).

Original entry on oeis.org

1, 3, 7, 13, 25, 41, 65, 93, 133, 177, 245, 305, 397, 489, 609, 725, 893, 1029, 1241, 1425, 1665, 1889, 2209, 2457, 2821, 3145, 3549, 3913, 4429, 4805, 5397, 5885, 6493, 7045, 7781, 8341, 9185, 9881, 10745, 11489, 12545, 13297, 14453, 15385, 16497, 17517, 18917
Offset: 1

Views

Author

Felix Huber, Mar 08 2025

Keywords

Comments

a(n) is odd.

Crossrefs

Programs

  • Maple
    A381711:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 and v<>0 then
                   if w=0 or w=v^2/(4*u) then
                      a:=a+2
                   elif wA381711(n),n=1..47);

Formula

a(n) = A379597(n) - A381710(n).

A358398 a(n) is the number of reducible monic cubic polynomials x^3 + r*x^2 + s*x + t with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t) <= n).

Original entry on oeis.org

15, 53, 117, 215, 329, 493, 657, 877, 1103, 1383, 1643, 2017, 2325, 2721, 3131, 3601, 4009, 4575, 5031, 5647, 6221, 6849, 7409, 8211, 8849, 9593, 10335, 11199, 11899, 12915, 13671, 14655, 15559, 16535, 17473, 18711, 19619, 20711, 21787, 23099, 24095, 25507, 26571, 27931, 29259
Offset: 1

Views

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Cf. A067274.

Programs

  • PARI
    { a(n) =
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3]) ), ct += 1 );
        ); ); );
        return( ct );
    }
    vector(12, n, a(n) ) \\ Joerg Arndt, Dec 12 2022

Formula

Dubickas (2014) shows that a(n) ~ 2(1+(2/3)Pi^2)n^2 = 15.1598... n^2 for large n.

Extensions

a(26)-a(45) from Hugo Pfoertner, Nov 27 2022

A358399 a(n) is the number of reducible monic quartic polynomials (x^4 + r*x^3 + s*x^2 + t*x + u) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u) <= n).

Original entry on oeis.org

47, 271, 810, 1849, 3395, 5832, 8915, 13242, 18465, 25267, 32874, 43023, 53662, 66957, 81770, 99374, 117564, 140303, 163048, 190757, 219702, 252465, 285820, 326853, 366732
Offset: 1

Views

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = \\ A358399
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
        for (c4 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3,c4]) ), ct += 1 );
        ); ); ); );
        return( ct );
    }
    vector(12, n, a(n) )
    \\ Joerg Arndt, Dec 05 2022

A358400 a(n) is the number of reducible monic quintic polynomials (x^5 + r*x^4 + s*x^3 + t*x^2 + u*x + v) with integer coefficients bounded by naïve height n (abs(r), abs(s), abs(t), abs(u), abs(v) <= n).

Original entry on oeis.org

139, 1313, 5359, 15365, 34229, 68385, 120421, 200839, 312057, 468827, 669591, 943175, 1274089, 1701441, 2216841, 2856379, 3594651, 4510437, 5541135, 6788823, 8195941, 9845089, 11670925, 13842429, 16191555
Offset: 1

Views

Author

Lorenz H. Menke, Jr., Nov 13 2022

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = \\ A358400
        my( ct = 0 );
        for (c1 = -n, n,
        for (c2 = -n, n,
        for (c3 = -n, n,
        for (c4 = -n, n,
        for (c5 = -n, n,
            if ( ! polisirreducible( Pol([1,c1,c2,c3,c4,c5]) ), ct += 1 );
        ); ); ); ); );
        return( ct );
    }
    vector(7, n, a(n) )
    \\ Joerg Arndt, Dec 05 2022

A270383 Number of ordered pairs (i,j) with i >= j, |i|, |j| <= n, and |i * j| <= n.

Original entry on oeis.org

1, 6, 12, 18, 27, 33, 43, 49, 59, 68, 78, 84, 98, 104, 114, 124, 137, 143, 157, 163, 177, 187, 197, 203, 221, 230, 240, 250, 264, 270, 288, 294, 308, 318, 328, 338, 359, 365, 375, 385, 403, 409, 427, 433, 447, 461, 471, 477, 499, 508, 522
Offset: 0

Views

Author

Lorenz H. Menke, Jr., Mar 15 2016

Keywords

Examples

			For n = 2 the a(2) = 12 pairs are (2,1), (2,0), (2,-1), (1,1), (1,0), (1,-1), (1,-2), (0,0), (0,-1), (0,-2), (-1,-1), and (-1,-2). - _Danny Rorabaugh_, Apr 05 2016
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=2Sum[Length[Divisors[k]],{k,1,n}]+Floor[Sqrt[n]]+2n+1
  • PARI
    a(n) = 2*sum(k=1, n, numdiv(k)) + sqrtint(n) + 2*n + 1; \\ Michel Marcus, Apr 05 2016

Formula

a(n) = 2*(Sum_{k=1..n} tau(k)) + floor(sqrt(n)) + 2*n + 1, where tau(k) = A000005(k) is number of divisors of k.
a(n) = A067274(n) + 2 for n >= 1.
Showing 1-10 of 13 results. Next