cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A211266 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21, 24, 28, 30, 34, 38, 41, 44, 49, 51, 56, 60, 63, 67, 72, 75, 79, 83, 88, 91, 97, 99, 104, 109, 112, 117, 123, 125, 130, 135, 140, 143, 149, 152, 157, 163, 167, 170, 177, 180, 186, 190, 194, 199, 205, 209, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Guide to related sequences:
A056924 ... 1<=x
A211159 ... 1<=x
A211261 ... 1<=x
A211262 ... 1<=x
A211263 ... 1<=x
A211264 ... 1<=x
A211265 ... 1<=x
A211266 ... 1<=x
A211267 ... 1<=x
A181972 ... 1<=x
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

Examples

			a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211270 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y = 2n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 3, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 4, 5
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (2,12), (3,8), (4,6).
For n = 2, only the pair (2,2) satisfies the condition, thus a(2) = 1. - _Antti Karttunen_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    seq(floor((numtheory:-tau(2*n)-1)/2),n=1..100); # Robert Israel, Feb 25 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* this sequence *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211270(n) = sumdiv(2*n,y,(((2*n/y)<=y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = floor((A000005(2n)-1)/2). - Robert Israel, Feb 25 2019

Extensions

Term a(2) corrected by Antti Karttunen, Sep 30 2018

A211271 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 6, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 4, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 6
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(3) counts this pair: (3,3). - _Antti Karttunen_, Jan 15 2025
a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10).
		

Crossrefs

Cf. A211266.
Cf. also A211262.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211271(n) = { my(n3=3*n); sumdiv(n3,d,(d <= (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025

Extensions

Data section extended up to a(108) and a(3) corrected from 0 to 1 by Antti Karttunen, Jan 15 2025

A091626 Number of ordered integer pairs (b,c) with 0 <= b, c <= n such that both roots of x^2+bx+c=0 are integers.

Original entry on oeis.org

1, 2, 4, 6, 9, 11, 14, 16, 19, 22, 25, 27, 31, 33, 36, 39, 43, 45, 49, 51, 55, 58, 61, 63, 68, 71, 74, 77, 81, 83, 88, 90, 94, 97, 100, 103, 109, 111, 114, 117, 122, 124, 129, 131, 135, 139, 142, 144, 150, 153, 157, 160, 164, 166, 171, 174, 179, 182, 185, 187
Offset: 0

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Also number of ordered pairs of nonnegative integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021

Examples

			The six quadratics for a(3)=6 and their roots are as follows:
x^2 + 0*x + 0; x=0.
x^2 + 1*x + 0; x=0, x=-1.
x^2 + 2*x + 0; x=0, x=-2.
x^2 + 2*x + 1; x=-1.
x^2 + 3*x + 0; x=0, x=-3.
x^2 + 3*x + 2; x=-1, x=-2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n-1] + Ceiling[ DivisorSigma[0, n]/2] + 1; a[0]=1; a[1]=2; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Nov 08 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = sum(i=0, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
    
  • Python
    from math import isqrt
    def A091626(n):
        m = isqrt(n)
        return 1 if n == 0 else n+sum(n//k for k in range(1, m+1))-m*(m-1)//2 # Chai Wah Wu, Oct 07 2021

Formula

a(n) = a(n-1) + ceiling(tau(n)/2) + 1, n>1. - Vladeta Jovovic, Jun 12 2004
a(n) = n + floor(sqrt(n))/2 + A006218(n)/2, n>0. - Griffin N. Macris, Jun 14 2016

A211272 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 5, 5, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 2, 2
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(24) counts these pairs: (1,12), (2,6), (3,4).
		

Crossrefs

Programs

  • Magma
    [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // Marius A. Burtea, Feb 07 2020
  • Maple
    [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - Robert Israel, Feb 07 2020
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Formula

a(n) = ceiling(A000005(floor(n/2))/2). - Robert Israel, Feb 07 2020

A211273 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025

A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n.

Original entry on oeis.org

1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 37, 43, 46, 52, 57, 62, 67, 72, 78, 84, 88, 95, 99, 107, 111, 117, 124, 130, 134, 142, 147, 154, 159, 166, 173, 179, 184, 191, 197, 206, 210, 218, 223, 231, 237, 243, 250, 259, 264, 271, 277, 286, 289, 299, 305, 313
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(3) corrected by Sean A. Irvine, Jan 22 2025

A211275 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

A379597 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a nonnegative discriminant.

Original entry on oeis.org

1, 4, 12, 24, 50, 80, 134, 192, 276, 366, 510, 632, 834, 1018, 1262, 1502, 1858, 2136, 2584, 2956, 3448, 3910, 4576, 5076, 5834, 6488, 7320, 8066, 9136, 9892, 11118, 12114, 13358, 14482, 15978, 17108, 18862, 20272, 22024, 23532, 25700, 27216, 29600, 31486, 33746
Offset: 1

Author

Felix Huber, Feb 18 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and nonnegative discriminant v^2 - 4*u*w have two real solutions.
a(n) is even for n >= 2.

Examples

			a(3) = 12 because there are 12 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a nonnegative discriminant: (u, v, w) = (1, 0, 0), (1, -1, 0), (1, 1, 0), (1, 0, -1), (1, -1, -1), (1, 1, -1), (1, -2, 0), (1, 2, 0), (1, 0, -2), (2, -1, 0), (2, 1, 0), and (2, 0, -1). Multiplied equations like 2*(1, 0, 0) = (2, 0, 0) or (-1)*(1, -1, 0) = (-1, 1, 0) do not have a distinct solution set.
		

Programs

  • Maple
    A379597:=proc(n)
       option remember;
       local a,u,v,w;
       if n=1 then
          1
       else
          a:=0;	
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                if igcd(u,v,w)=1 then
                   if v=0 then
                      a:=a+1
                   elif w=0 or w>=v^2/(4*u) then
                      a:=a+2
                   else
                      a:=a+4
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A379597(n),n=1..45);

A381710 a(n) is the number of distinct solution sets to the quadratic equations u*x^2 + v*x + w = 0 with integer coefficients u, v, w, abs(u) + abs(v) + abs(w) <= n having a negative discriminant.

Original entry on oeis.org

0, 1, 5, 11, 25, 39, 69, 99, 143, 189, 265, 327, 437, 529, 653, 777, 965, 1107, 1343, 1531, 1783, 2021, 2367, 2619, 3013, 3343, 3771, 4153, 4707, 5087, 5721, 6229, 6865, 7437, 8197, 8767, 9677, 10391, 11279, 12043, 13155, 13919, 15147, 16101, 17249, 18301, 19763
Offset: 1

Author

Felix Huber, Mar 06 2025

Keywords

Comments

Quadratic equations u*x^2 + v*x + w = 0 with real coefficients u, v, w and negative discriminant v^2 - 4*u*w have two complex solutions.
a(n) is odd for n >= 2.

Examples

			a(3) = 5 because there are 5 equations with abs(u) + abs(v) + abs(w) <= 3 and distinct solution set having a negative discriminant: (u, v, w) = (1, 0, 1), (1, -1, 1), (1, 1, 1), (1, 0, 2), (2, 0, 1). Multiplied equations like (-1)*(1, -1, 1) = (-1, 1, -1) do not have a distinct solution set.
		

Programs

  • Maple
    A381710:=proc(n)
       option remember;
       local a,u,v,w;
          if n=1 then
          0
       else
          a:=0;
          for u to n-1 do
             for v from 0 to n-u do
                w:=n-u-v;
                   if igcd(u,v,w)=1 then
                      if v=0 then
                         a:=a+1
                      elif w>v^2/(4*u) then
                        a:=a+2
                   fi
                fi
             od
          od;
          a+procname(n-1)
       fi;
    end proc;
    seq(A381710(n),n=1..47);
Showing 1-10 of 11 results. Next