cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A211266 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21, 24, 28, 30, 34, 38, 41, 44, 49, 51, 56, 60, 63, 67, 72, 75, 79, 83, 88, 91, 97, 99, 104, 109, 112, 117, 123, 125, 130, 135, 140, 143, 149, 152, 157, 163, 167, 170, 177, 180, 186, 190, 194, 199, 205, 209, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Guide to related sequences:
A056924 ... 1<=x
A211159 ... 1<=x
A211261 ... 1<=x
A211262 ... 1<=x
A211263 ... 1<=x
A211264 ... 1<=x
A211265 ... 1<=x
A211266 ... 1<=x
A211267 ... 1<=x
A181972 ... 1<=x
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

Examples

			a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A211270 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y = 2n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 3, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 4, 5
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (2,12), (3,8), (4,6).
For n = 2, only the pair (2,2) satisfies the condition, thus a(2) = 1. - _Antti Karttunen_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    seq(floor((numtheory:-tau(2*n)-1)/2),n=1..100); # Robert Israel, Feb 25 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* this sequence *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211270(n) = sumdiv(2*n,y,(((2*n/y)<=y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = floor((A000005(2n)-1)/2). - Robert Israel, Feb 25 2019

Extensions

Term a(2) corrected by Antti Karttunen, Sep 30 2018

A211271 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 6, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 4, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 6
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(3) counts this pair: (3,3). - _Antti Karttunen_, Jan 15 2025
a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10).
		

Crossrefs

Cf. A211266.
Cf. also A211262.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211271(n) = { my(n3=3*n); sumdiv(n3,d,(d <= (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025

Extensions

Data section extended up to a(108) and a(3) corrected from 0 to 1 by Antti Karttunen, Jan 15 2025

A211273 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025

A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n.

Original entry on oeis.org

1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 37, 43, 46, 52, 57, 62, 67, 72, 78, 84, 88, 95, 99, 107, 111, 117, 124, 130, 134, 142, 147, 154, 159, 166, 173, 179, 184, 191, 197, 206, 210, 218, 223, 231, 237, 243, 250, 259, 264, 271, 277, 286, 289, 299, 305, 313
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(3) corrected by Sean A. Irvine, Jan 22 2025

A211275 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
Showing 1-6 of 6 results.