A067331 Convolution of Fibonacci F(n+1), n >= 0, with F(n+3), n >= 0.
2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, 1908, 3360, 5878, 10225, 17700, 30509, 52390, 89664, 153000, 260375, 442032, 748775, 1265832, 2136000, 3598250, 6052061, 10164540, 17048641, 28559450, 47786400, 79870428, 133359715, 222457608, 370747675, 617363100
Offset: 0
Examples
From _John M. Campbell_, Jan 03 2016: (Start) Letting n=2, the external path length of the Fibonacci tree T(5) of order n+3=5 illustrated below is 12 = a(2) = F(1)*F(5) + F(2)*F(4) + F(3)*F(3). . / \ /\ /\ /\ (End)
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
Links
- Robert Israel, Table of n, a(n) for n = 0..4720
- Matthew Blair, Rigoberto Flórez, Antara Mukherjee, and José L. Ramírez, Matrices in the determinant Hosoya triangle, Fibonacci Quart. 58 (2020), no. 5, 34-54.
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Geometric Patterns in The Determinant Hosoya Triangle, INTEGERS, A90, 2021.
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, Electron. J. Combin. 21 (1) (2014), P1.7.
- John M. Campbell, On the external path length of a Fibonacci tree.
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20(2) (1982), 168-178.
- S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, HAL Id: hal-00836788, 2013.
- S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, Ann. Comb. 18 (2014), 447-457.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Magma
[((7*n+10)*Fibonacci(n+1)+4*(n+1)*Fibonacci(n))/5: n in [0..40]]; // Vincenzo Librandi, Jan 02 2016
-
Maple
f:= gfun:-rectoproc({a(n) = 2*a(n-1)+a(n-2) - 2*a(n-3)-a(n-4),a(0)=2,a(1)=5,a(2)=12,a(3)=25},a(n),remember): map(f, [$0..50]); # Robert Israel, Jan 06 2016
-
Mathematica
LinearRecurrence[{2, 1, -2, -1}, {2, 5, 12, 25}, 70] (* Vincenzo Librandi, Jan 02 2016 *) Table[SeriesCoefficient[(2 + x)/(1 - x - x^2)^2, {x, 0, n}], {n, 0, 34}] (* Michael De Vlieger, Jan 02 2016 *) Print[Table[Sum[Binomial[n + 3 - i, i]*(n + 2 - 2*i), {i, 0, Floor[(n + 3)/2]}], {n, 0, 100}]] (* John M. Campbell, Jan 04 2016 *) Module[{nn=40,fibs},fibs=Fibonacci[Range[nn]];Table[ListConvolve[Take[ fibs,n],Take[fibs,{2,n+2}]],{n,nn-2}]][[All,2]] (* Harvey P. Dale, Aug 03 2019 *)
-
PARI
Vec((2+x)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Jan 04 2016
Formula
a(n) = ((7*n + 10)*F(n + 1) + 4*(n + 1)*F(n))/5, with F(n) = A000045(n) (Fibonacci).
G.f.: (2 + x)/(1 - x - x^2)^2.
a(n) = Sum_{i=0..floor((n+3)/2)} binomial(n+3-i, i)*(n + 2 - 2*i). - John M. Campbell, Jan 04 2016
E.g.f.: exp(x/2)*((50 + 55*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(18 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023
Comments