cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067336 a(0)=1, a(1)=2, a(n) = a(n-1)*9/2 - Catalan(n-1) where Catalan(n) = binomial(2n,n)/(n+1) = A000108(n).

Original entry on oeis.org

1, 2, 8, 34, 148, 652, 2892, 12882, 57540, 257500, 1153888, 5175700, 23231864, 104335376, 468766292, 2106773874, 9470787588, 42583186476, 191494694352, 861248485884, 3873850923288, 17425765034376, 78391476387672, 352670161180884, 1586672665700328, 7138737091504152
Offset: 0

Views

Author

Henry Bottomley, Jan 15 2002

Keywords

Comments

Note that while a(n) is even (for n > 0), it is a multiple of 4 except when n = 2^m-1, i.e., when Catalan(n) is odd.
Result of applying the Riordan matrix ((1+sqrt(1-4*x))/2, (1-sqrt(1-4*x))/2) (inverse of (1/(1-x), x*(1-x))) to 3^n. - Paul Barry, Mar 12 2005
Hankel transform is A001787(n+1). - Paul Barry, Mar 15 2010

Examples

			a(2) =   2*9/2 -  1 =   8;
a(3) =   8*9/2 -  2 =  34;
a(4) =  34*9/2 -  5 = 148;
a(5) = 148*9/2 - 14 = 652.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+Sqrt[1-4*x])/(3*Sqrt[1-4*x]-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = A067337(2n, n).
G.f.: (1+sqrt(1-4*x))/(3*sqrt(1-4*x)-1). - Paul Barry, Mar 12 2005
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k+1). - Philippe Deléham, Jun 10 2007
G.f.: (1-x*c(x))/(1-3*x*c(x)), where c(x) is the g.f. of A000108. - Paul Barry, Mar 15 2010
Conjecture: 2*n*a(n) + (-17*n+12)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
The above conjecture is true. - Nguyen Tuan Anh, Mar 15 2025
G.f.: 1 + 2*x/(Q(0)-3*x), where Q(k) = 2*x + (k+1)/(2*k+1) - 2*x*(k+1)/(2*k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) ~ 3^(2*n-1) / 2^n. - Vaclav Kotesovec, Feb 13 2014

A135299 Pascal's triangle, but the last element of the row is the sum of all the previous terms.

Original entry on oeis.org

1, 1, 2, 1, 3, 8, 1, 4, 11, 32, 1, 5, 15, 43, 128, 1, 6, 20, 58, 171, 512, 1, 7, 26, 78, 229, 683, 2048, 1, 8, 33, 104, 307, 912, 2731, 8192, 1, 9, 41, 137, 411, 1219, 3643, 10923, 32768, 1, 10, 50, 178, 548, 1630, 4862, 14566, 43691, 131072
Offset: 0

Views

Author

Jose Ramon Real, Dec 04 2007

Keywords

Examples

			T(2,1) = T(1,0) + T(1,1) = 1 + 2 = 3;
T(2,2) = T(0,0) + T(1,0) + T(1,1) + T(2,0) + T(2,1) = 1 + 1 + 2 + 1 + 3 = 8.
From _G. C. Greubel_, Oct 09 2016: (Start)
The triangle is:
  1;
  1, 2;
  1, 3,  8;
  1, 4, 11, 32;
  1, 5, 15, 43, 128;
  1, 6, 20, 58, 171, 512;
  ... (End)
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[n_, 0] := 1; T[n_, k_] := T[n - 1, k] + T[n - 1, k - 1]; T[n_, n_] := 2^(2*n - 1); Table[T[n, k], {n, 0, 5}, {k, 0, n}] (* G. C. Greubel, Oct 09 2016 *)

Formula

T(0,0) = 1;
T(n,0) = 1;
T(n,k) = T(n-1, k-1) + T(n-1, k) if k < n;
T(n,n) = (Sum_{j=0..n-1} Sum_{i=0..j} T(j,i)) + Sum_{i=0..n-1} T(n,i) [i.e., sum of all earlier terms of the triangle].
T(n,n) = (4^n)/2 for n > 0;
T(n,n) = 2*Sum_{i=0..n-1} T(n,i).
Showing 1-2 of 2 results.