A067357 Number of self-conjugate partitions of 4n+1 into odd parts.
1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 8, 10, 10, 12, 14, 15, 18, 20, 22, 26, 29, 32, 36, 40, 44, 50, 56, 60, 68, 76, 82, 92, 101, 110, 122, 134, 146, 160, 176, 191, 210, 230, 248, 272, 296, 320, 350, 380, 410, 446, 484, 522, 566, 612, 660, 715, 772, 830, 896, 966, 1038, 1120
Offset: 0
Examples
a(5)=3 because we have [11,1,1,1,1,1,1,1,1,1,1], [9,3,3,1,1,1,1,1,1] and [5,5,5,3,3]. G.f. = 1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + ...
References
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 260, Article 512.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. S. Andersen, A Bijection Between Two Different Classes of Partitions Enumerated by p_nu(n), arXiv:2007.09794 [math.CO], 2020.
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, Journal of the Indian Mathematical Society, Volume 84, Issue 3-4, 2017.
- George E. Andrews, Integer partitions with even parts below odd parts and the mock theta functions, to appear in Annals of Combinatorics, 2017.
Programs
-
Maple
g:=sum(q^(k*(k+1))/product(1-q^(2*j+1),j=0..k),k=0..8): gser:=series(g,q=0,80): seq(coeff(gser,q,n),n=0..75); # Emeric Deutsch, Feb 10 2006
-
Mathematica
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / Product[ 1 - x^i, {i, 1, 2 k + 1, 2}], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jul 25 2015 *) Table[Length[Flatten[Table[Select[IntegerPartitions[w], (w-Length[#])== r && TransposePartition[#] == # &],{w,r,1+2r}],1]],{r,1,17}] (* Wouter Meeussen, May 24 2025 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 4*n+1) -1) \ 2, x^(k^2 + k) / prod(j=0, k, 1 - x^(2*j+1), 1 + x * O(x^(n - k^2 - k)))), n))}; /* Michael Somos, Jan 27 2008 */
-
PARI
/* Continued Fraction Expansion: */ {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + (-x)^(n-k+1)*(1 - (-x)^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013
Formula
G.f.: Sum_{k>=0} q^(k*(k+1)) / ((1-q) * (1-q^3) ... (1-q^(2*k+1))). - Emeric Deutsch and Dean Hickerson
G.f.: Sum_{k>=0} q^k * (1+q) * (1+q^3) ... (1+q^(2*k-1)). - Dean Hickerson and Vladeta Jovovic
G.f.: 1/(1 - x*(1+x)/(1 + x^2*(1-x^2)/(1 - x^3*(1+x^3)/(1 + x^4*(1-x^4)/(1 - x^5*(1+x^5)/(1 - ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013
From Michael Somos, Jul 25 2015: (Start)
Expansion of nu(-x) in powers of x where nu() is a 3rd-order mock theta function.
a(n) = (-1)^n * A053254(n).
a(2*n) = A085140(n).
a(2*n + 1) = A053253(n). (End)
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jun 15 2019
Extensions
More terms from Emeric Deutsch, Feb 10 2006
Comments