A067369 Weight of the alternating group (A_n) in transpositions.
0, 0, 4, 22, 166, 1266, 11166, 106128, 1122192, 12809520, 159451920, 2128973760, 30594214080, 468275713920, 7641089769600, 131971588761600, 2412294180710400, 46422407927347200, 940023724189132800, 19949344876532736000, 443393309963068416000, 10288553164881868800000
Offset: 1
Links
- Charlie Neder and Muniru A Asiru, Table of n, a(n) for n = 1..445
Programs
-
GAP
Concatenation([0],List([2..25],n->(1/2)*((-1)^(n+1)*Factorial(n-2)+n*Factorial(n)-AbsInt(Stirling1(n+1,2))))); # Muniru A Asiru, Dec 15 2018
-
Maple
seq(coeff(series(factorial(n)*(1/2)*(-(1+x)*log(1+x)+x+x/(1-x)^2+log(1-x)/(1-x)+2),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Dec 15 2018
-
Mathematica
a[n_] := 1/2*((-1)^(n+1)*(n-2)!+n*n!-Abs[StirlingS1[n+1, 2]]); a[1]=0; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jan 12 2015, after Vladeta Jovovic *)
-
PARI
a(n)={if(n < 2, 0, 1/2*((-1)^(n+1)*(n-2)!+n*n!-abs(stirling(n+1, 2, 1))))} \\ Andrew Howroyd, Dec 14 2018
Formula
a(n) = a(n-1) + [(n-1)!/2]*[vbar(P_N-1)+1]*[n-1)] where vbar(P_N) is the average weight of a permutation in P_N, the periphery of A_n. vbar(P_N-1) is p(n-1)/(n-1)!2 where p(n) is from sequence A067370.
From Vladeta Jovovic, Feb 02 2003: (Start)
a(n) = (1/2)*((-1)^(n+1)*(n-2)! + n*n! - abs(Stirling1(n+1, 2))), n > 1.
E.g.f.: (1/2)*(-(1+x)*log(1+x) + x + x/(1-x)^2 + log(1-x)/(1-x) + 2). (End)
Extensions
More terms from Vladeta Jovovic, Feb 02 2003
a(20)-a(22) from Charlie Neder, Dec 14 2018
Comments