A067381
Smallest prime expressible as the sum of (at least two) consecutive primes in n ways.
Original entry on oeis.org
5, 41, 311, 311, 34421, 442019, 3634531, 48205429, 1798467197, 36154343837, 166400805323, 6123584726269
Offset: 1
5 can be represented (in just one way) as 2+3.
A164556
Primes expressible as the sum of (at least two) consecutive primes in at least 5 ways.
Original entry on oeis.org
34421, 229841, 235493, 271919, 345011, 358877, 414221, 442019, 488603, 532823, 621937, 655561, 824099, 888793, 896341, 935791, 954623, 963173, 988321, 1055969, 1083371, 1083941, 1115911, 1170857, 1261763, 1338823, 1352863, 1409299, 1444957, 1598953, 1690597
Offset: 1
a(1) = 34421 = Sum_{i=57..127} prime(i) = Sum_{i=226..248} prime(i) = Sum_{i=527..535} prime(i) = Sum_{i=654..660} prime(i) = Sum_{i=1382..1384} prime(i) and
a(3) = 235493 = Sum_{i=50..284} prime(i) = Sum_{i=120..300} prime(i) = Sum_{i=123..301} prime(i) = Sum_{i=334..424} prime(i) = Sum_{i=7701..7703} prime(i)
are expressible in 5 ways as the sum of two or more consecutive primes.
-
M:=1695000; P:=PrimesUpTo(M); S:=[0]; for p in P do t:=S[#S]+p; if #S ge 3 then if t-S[#S-2] gt M then break; end if; end if; S[#S+1]:=t;end for; c:=[0:j in [1..M]]; for C in [2..#S-1] do if IsEven(C) then L:=1; else L:=#S-C; end if; for j in [1..L] do s:=S[j+C]-S[j]; if s gt M then break; end if; if IsPrime(s) then c[s]+:=1; end if; end for; end for; [j:j in [1..M]|c[j] ge 5]; // Jon E. Schoenfield, Dec 25 2021
-
m=3*7!;lst={};Do[p=Prime[a];Do[p+=Prime[b];If[PrimeQ[p]&&p
A350334
Primes expressible as the sum of (at least two) consecutive primes in at least 6 ways.
Original entry on oeis.org
442019, 1866373, 3051161, 3634531, 3704819, 3839677, 3890609, 4539331, 4711937, 5011213, 5069023, 5369743, 5384221, 6137587, 6783263, 6893273, 9213073, 10354177, 10602763, 11394193, 11849339, 12012257, 13126801, 13322887, 14385781, 15077143, 17225003, 19301221
Offset: 1
442019 is a term because it is a prime and
442019 = Sum_{j=13620..13622} prime(j)
= Sum_{j=5044..5052} prime(j)
= Sum_{j=2019..2043} prime(j)
= Sum_{j=1573..1605} prime(j)
= Sum_{j=954..1010} prime(j)
= Sum_{j=81..381} prime(j).
A350335
Primes expressible as the sum of (at least two) consecutive primes in at least 7 ways.
Original entry on oeis.org
3634531, 27411611, 28127521, 28445689, 48205429, 54604973, 56857523, 63461429, 70734089, 72087167, 75489781, 82183951, 83020733, 89752433, 92712023, 94026311, 100925263, 111282419, 137392361, 163506407, 164711999, 194039771, 195327179, 196364899, 196876789
Offset: 1
3634531 is a term because it is a prime and
3634531 = Sum_{j=42997..43003} prime(j)
= Sum_{j=15749..15769} prime(j)
= Sum_{j=7294..7342} prime(j)
= Sum_{j=7032..7082} prime(j)
= Sum_{j=3397..3509} prime(j)
= Sum_{j=165..1003} prime(j)
= Sum_{j=65..995} prime(j).
Showing 1-4 of 4 results.
Comments