A067434 Number of distinct prime factors in binomial(2*n,n).
1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 10, 10, 9, 10, 10, 10, 10, 12, 13, 12, 12, 13, 14, 14, 14, 14, 14, 15, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 18, 19, 20, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 24, 23, 23, 23, 23, 24, 24, 24, 25, 25
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Programs
-
Haskell
a067434 = a001221 . a000984 -- Reinhard Zumkeller, May 25 2013
-
Maple
a := n -> nops(numtheory:-factorset(binomial(2*n,n))): seq(a(n), n=1..76); # Peter Luschny, Oct 31 2015
-
Mathematica
Table[Length[FactorInteger[Binomial[2 n, n]]], {n, 100}] (* T. D. Noe, Aug 17 2011 *)
-
PARI
a(n)=omega(binomial(2*n,n)) \\ Charles R Greathouse IV, May 25 2013
-
PARI
valp(n,p)=my(s);while(n\=p,s+=n);s a(n)=my(s);forprime(p=2,2*n,if(valp(2*n,p)>2*valp(n,p),s++)); s \\ Charles R Greathouse IV, May 25 2013
-
Python
from math import comb from sympy import primenu def A067434(n): return primenu(comb(n<<1,n)) # Chai Wah Wu, Aug 19 2024
Formula
a(n) ~ kn/log n, with k = log 4. - Charles R Greathouse IV, May 25 2013
Comments