A067526 Numbers n such that n - 2^k is a prime or 1 for all k satisfying 0 < k, 2^k < n.
3, 4, 5, 7, 9, 15, 21, 45, 75, 105
Offset: 1
Examples
45 belongs to this sequence as 45-2, 45-4, 45-8, 45-16, 45-32, i.e., 43, 41, 37, 29 and 13 are all primes.
Crossrefs
Cf. A039669 (n-2^k is prime).
Programs
-
Mathematica
f[n_] := Block[{k = 1}, While[2^k < n, k++ ]; k--; k]; Do[ a = Table[n - 2^k, {k, 1, f[n]} ]; If[ a[[ -1]] == 1, a = Drop[a, -1]]; If[ Union[ PrimeQ[a]] == {True}, Print[n]], {n, 5, 10^7, 2} ]
-
Python
from sympy import isprime def ok(n): k, pow2 = 1, 2 while pow2 < n - 1: if not isprime(n-pow2): return False pow2 *= 2 return (2 < n) print([m for m in range(1, 200) if ok(m)]) # Michael S. Branicky, Mar 04 2021
Extensions
Edited by Robert G. Wilson v, Feb 18 2002
Comments