A067570 Numbers n such that A000009(n) divides A067553(n).
0, 1, 2, 3, 4, 5, 7
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
nmax = 40; CoefficientList[Series[Product[1/(1 - (3*k-1)*x^(3*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (3*k-2)*x^(3*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (4*k-1)*x^(4*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (4*k-2)*x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (4*k-3)*x^(4*k-3)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-1)*x^(5*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-2)*x^(5*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-3)*x^(5*k-3)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-4)*x^(5*k-4)), {k, 1, nmax}], {x, 0, nmax}], x]