A067599 Decimal encoding of the prime factorization of n: concatenation of prime factors and exponents.
21, 31, 22, 51, 2131, 71, 23, 32, 2151, 111, 2231, 131, 2171, 3151, 24, 171, 2132, 191, 2251, 3171, 21111, 231, 2331, 52, 21131, 33, 2271, 291, 213151, 311, 25, 31111, 21171, 5171, 2232, 371, 21191, 31131, 2351, 411, 213171, 431, 22111, 3251, 21231
Offset: 2
Examples
The prime factorization of 24 = 2^3 * 3^1 has corresponding encoding 2331. So a(24) = 2331. a(42) = 213171 since 42 = 2^1*3^1*7^1. - _Amarnath Murthy_, Feb 27 2002
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
Programs
-
Haskell
import Data.Function (on) a067599 n = read $ foldl1 (++) $ zipWith ((++) `on` show) (a027748_row n) (a124010_row n) :: Integer -- Reinhard Zumkeller, Oct 27 2013
-
Maple
with(ListTools): with(MmaTranslator[Mma]): seq(FromDigits(FlattenOnce(ifactors(n)[2])), n=2..46); # Wolfdieter Lang, Aug 16 2014 # second Maple program: a:= n-> parse(cat(map(i-> i[], sort(ifactors(n)[2]))[])): seq(a(n), n=2..60); # Alois P. Heinz, Mar 16 2018
-
Mathematica
f[n_] := FromDigits[ Flatten[ IntegerDigits[ FactorInteger[ n]]]]; Table[ f[n], {n, 2, 50} ]
-
PARI
A067599(n)=eval(concat(concat([""],concat(Vec(factor(n)~))~))) \\ - M. F. Hasler, Oct 06 2013
Extensions
Edited by Robert G. Wilson v, Feb 02 2002
Merged contributions from A068633 to here, and minor edits by M. F. Hasler, Oct 06 2013
Comments