cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067599 Decimal encoding of the prime factorization of n: concatenation of prime factors and exponents.

Original entry on oeis.org

21, 31, 22, 51, 2131, 71, 23, 32, 2151, 111, 2231, 131, 2171, 3151, 24, 171, 2132, 191, 2251, 3171, 21111, 231, 2331, 52, 21131, 33, 2271, 291, 213151, 311, 25, 31111, 21171, 5171, 2232, 371, 21191, 31131, 2351, 411, 213171, 431, 22111, 3251, 21231
Offset: 2

Views

Author

Joseph L. Pe, Jan 31 2002

Keywords

Comments

If n has prime factorization p_1^e_1 * ... * p_r^e_r with p_1 < ... < p_r, then its decimal encoding is p_1 e_1...p_r e_r. For example, 15 = 3^1 * 5^1, so has decimal encoding 3151.
Sequence A068633 is a duplicate, up to a conventional initial term a(1)=11.
a(31) = a(177147) = 311. Is there any solution to a(n) = n? - Franklin T. Adams-Watters, Dec 18 2006
The earliest duplicate is a(223) = 2231 = a(12). There is no fixed point below 3*10^6. - M. F. Hasler, Oct 06 2013

Examples

			The prime factorization of 24 = 2^3 * 3^1 has corresponding encoding 2331. So a(24) = 2331.
a(42) = 213171 since 42 = 2^1*3^1*7^1. - _Amarnath Murthy_, Feb 27 2002
		

Crossrefs

Programs

  • Haskell
    import Data.Function (on)
    a067599 n = read $ foldl1 (++) $
       zipWith ((++) `on` show) (a027748_row n) (a124010_row n) :: Integer
    -- Reinhard Zumkeller, Oct 27 2013
  • Maple
    with(ListTools): with(MmaTranslator[Mma]): seq(FromDigits(FlattenOnce(ifactors(n)[2])), n=2..46); # Wolfdieter Lang, Aug 16 2014
    # second Maple program:
    a:= n-> parse(cat(map(i-> i[], sort(ifactors(n)[2]))[])):
    seq(a(n), n=2..60);  # Alois P. Heinz, Mar 16 2018
  • Mathematica
    f[n_] := FromDigits[ Flatten[ IntegerDigits[ FactorInteger[ n]]]]; Table[ f[n], {n, 2, 50} ]
  • PARI
    A067599(n)=eval(concat(concat([""],concat(Vec(factor(n)~))~))) \\ - M. F. Hasler, Oct 06 2013
    

Extensions

Edited by Robert G. Wilson v, Feb 02 2002
Merged contributions from A068633 to here, and minor edits by M. F. Hasler, Oct 06 2013