A067628 Minimal perimeter of polyiamond with n triangles.
0, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11, 12, 11, 12, 13, 12, 13, 12, 13, 14, 13, 14, 15, 14, 15, 14, 15, 16, 15, 16, 15, 16, 17, 16, 17, 16, 17, 18, 17, 18, 17, 18, 19, 18, 19, 18, 19, 18, 19, 20, 19, 20, 19, 20, 21, 20, 21, 20, 21, 20, 21, 22, 21, 22, 21, 22
Offset: 0
Keywords
References
- Frank Harary and Heiko Harborth, Extremal animals, J. Combinatorics Information Syst. Sci., 1(1):1-8, 1976.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023). See Corollary 1.9 at p. 8.
- Greg Malen and Érika Roldán, Polyiamonds Attaining Extremal Topological Properties, arXiv:1906.08447 [math.CO], 2019.
- J. Yackel, R. R. Meyer, and I. Christou, Minimum-perimeter domain assignment, Mathematical Programming, vol. 78 (1997), pp. 283-303.
- W. C. Yang and R. R. Meyer, Maximal and minimal polyiamonds, 2002.
Programs
-
Maple
interface(quiet=true); for n from 0 to 100 do if (1 = 1) then temp1 := ceil(sqrt(6*n)); end if; if ((temp1 mod 2) = (n mod 2)) then temp2 := 0; else temp2 := 1; end if; printf("%d,", temp1 + temp2); od;
-
PARI
a(n)=2*ceil((n+sqrt(6*n))/2)-n; \\ Stefano Spezia, Oct 02 2019
-
Python
from math import isqrt def A067628(n): return (c:=isqrt(6*n-1)+1)+((c^n)&1) if n else 0 # Chai Wah Wu, Jul 28 2022
Formula
Let c(n) = ceiling(sqrt(6n)). Then a(n) is whichever of c(n) or c(n) + 1 has the same parity as n.
a(n) = 2*ceiling((n + sqrt(6*n))/2) - n (Harary and Harborth, 1976). - Stefano Spezia, Oct 02 2019
Comments