cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A027709 Minimal perimeter of polyomino with n square cells.

Original entry on oeis.org

0, 4, 6, 8, 8, 10, 10, 12, 12, 12, 14, 14, 14, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24, 24, 26, 26, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 30, 30, 30, 30, 30, 30, 30, 32, 32, 32, 32, 32, 32, 32, 32, 34, 34, 34, 34, 34, 34
Offset: 0

Views

Author

Jonathan Custance (jevc(AT)atml.co.uk)

Keywords

Examples

			a(5) = 10 because we can arrange 5 squares into 2 rows, with 2 squares in the top row and 3 squares in the bottom row. This shape has perimeter 10, which is minimal for 5 squares.
		

References

  • F. Harary and H. Harborth, Extremal Animals, Journal of Combinatorics, Information & System Sciences, Vol. 1, No 1, 1-8 (1976).
  • W. C. Yang, Optimal polyform domain decomposition (PhD Dissertation), Computer Sciences Department, University of Wisconsin-Madison, 2003.

Crossrefs

Cf. A000105, A067628 (analog for triangles), A075777 (analog for cubes).
Cf. A135711.
Number of such polyominoes is in A100092.

Programs

  • Haskell
    a027709 0 = 0
    a027709 n = a027434 n * 2  -- Reinhard Zumkeller, Mar 23 2013
    
  • Magma
    [2*Ceiling(2*Sqrt(n)): n in [0..100]]; // Vincenzo Librandi, May 11 2015
    
  • Maple
    interface(quiet=true); for n from 0 to 100 do printf("%d,", 2*ceil(2*sqrt(n))) od;
  • Mathematica
    Table[2*Ceiling[2*Sqrt[n]], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *)
  • Python
    from math import isqrt
    def A027709(n): return 1+isqrt((n<<2)-1)<<1 if n else 0 # Chai Wah Wu, Jul 28 2022

Formula

a(n) = 2*ceiling(2*sqrt(n)).
a(n) = 2*A027434(n) for n > 0. - Tanya Khovanova, Mar 04 2008

Extensions

Edited by Winston C. Yang (winston(AT)cs.wisc.edu), Feb 02 2002

A069813 Maximum number of triangles in polyiamond with perimeter n.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 13, 16, 19, 24, 27, 32, 37, 42, 47, 54, 59, 66, 73, 80, 87, 96, 103, 112, 121, 130, 139, 150, 159, 170, 181, 192, 203, 216, 227, 240, 253, 266, 279, 294, 307, 322, 337, 352, 367, 384, 399, 416, 433, 450, 467, 486, 503, 522, 541, 560, 579
Offset: 3

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Apr 30 2002

Keywords

Examples

			a(10) = 16 because the maximum number of triangles in a polyiamond of perimeter 10 is 16.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)))); // Marius A. Burtea, Jan 03 2020
  • Maple
    A069813 := proc(n)
        round(n^2/6) ;
        if modp(n,6) <> 0 then
            %-1 ;
        else
            % ;
        end if;
    end proc: # R. J. Mathar, Jul 14 2015
  • Mathematica
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 2, 3, 6, 7, 10}, 60] (* Jean-François Alcover, Jan 03 2020 *)
  • PARI
    a(n) = round(n^2/6) - (n % 6 != 0) \\ Michel Marcus, Jul 17 2013
    
  • PARI
    Vec(x^3*(x^2-x-1)*(x^2+1)/((x-1)^3*(x+1)*(x^2+x+1)) + O(x^60)) \\ Colin Barker, Jan 19 2015
    

Formula

a(n) = round(n^2/6) - (0 if n = 0 mod 6, 1 else) = A056829(n)-A097325(n).
From Colin Barker, Jan 18 2015: (Start)
a(n) = round((-25 + 9*(-1)^n + 8*exp(-2/3*i*n*Pi) + 8*exp((2*i*n*Pi)/3) + 6*n^2)/36), where i=sqrt(-1).
G.f.: x^3*(1+x-x^2)*(1+x^2) / ((1-x)^3*(1+x)*(1+x+x^2)). (End)
a(n) = A001399(n-3) + A001399(n-4) + A001399(n-6) - A001399(n-7). - R. J. Mathar, Jul 14 2015

A135711 Minimal perimeter of a polyhex with n cells.

Original entry on oeis.org

6, 10, 12, 14, 16, 18, 18, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 34, 34, 36, 36, 36, 38, 38, 38, 40, 40, 40, 42, 42, 42, 42, 44, 44, 44, 46, 46, 46, 46, 48, 48, 48, 48, 50, 50, 50, 50, 52, 52, 52, 52, 54, 54, 54, 54, 54, 56, 56, 56, 56, 58, 58, 58, 58, 58, 60, 60
Offset: 1

Views

Author

Tanya Khovanova, Mar 04 2008

Keywords

References

  • Y. S. Kupitz, "On the maximal number of appearances of the minimal distance among n points in the plane", in Intuitive geometry: Proceedings of the 3rd international conference held in Szeged, Hungary, 1991; Amsterdam: North-Holland: Colloq. Math. Soc. Janos Bolyai. 63, 217-244.

Crossrefs

Cf. A000228 (number of hexagonal polyominoes (or planar polyhexes) with n cells), A135708.
Analogs for triangles, squares, cubes: A067628, A027709, A075777.

Programs

  • Mathematica
    Table[2Ceiling[Sqrt[12n-3]],{n,120}] (* Harvey P. Dale, Dec 29 2019 *)

Formula

It is easy to use the formula of Harborth given in A135708 to show that a(n) = 2*ceiling(sqrt(12*n-3)). - Sascha Kurz, Mar 05 2008
2*A135708(n) - a(n) = 6n. - Tanya Khovanova, Mar 07 2008

Extensions

More terms from N. J. A. Sloane, Mar 05 2008

A008749 Expansion of (1+x^6)/((1-x)*(1-x^2)*(1-x^3)).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 12, 15, 18, 21, 26, 29, 34, 39, 44, 49, 56, 61, 68, 75, 82, 89, 98, 105, 114, 123, 132, 141, 152, 161, 172, 183, 194, 205, 218, 229, 242, 255, 268, 281, 296, 309, 324, 339, 354, 369
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For n >= 1, A067628(a(n+2)) appears for the first time in A067628. Equivalently, A067628(a(n+2)) is the first T such that the minimal perimeter of polyiamonds of T triangles is a(n+2). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002

Examples

			Let n = 8. Then a(n+2) = a(10) = 18. Note A067628(18) = 12 and is the first appearance of 12 in A067628. Equivalently, 12 is the first T such that the min perimeter of polyiamonds of T triangles is 18.
		

Crossrefs

Cf. A067628.

Programs

  • GAP
    a:=[1,1,2,3,4,5];; for n in [7..60] do a[n]:=a[n-1]+a[n-2]-a[n-4] -a[n-5]+a[n-6]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^6)/((1-x)*(1-x^2)*(1-x^3)), {x,0,60}], x] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    my(x='x+O('x^60)); Vec((1+x^6)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    ((1+x^6)/((1-x)*(1-x^2)*(1-x^3))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

Conjecture: Let b(n>=0) = (0, 1, 1, 1, 1, 3, 1, 3, 3, 3, 3, 5, 3, 5, 5, 5, 5, 7, 3, ...). Equivalently, let b(0) = 0, b(n>=1) = 2*floor((n-1)/6) + 1 + (2 if n+1=0 mod 6; 0 else). Then a(0) = 1, a(n>=1) = a(n-1) + b(n-1). - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 05 2002
a(n) = (47 + 6*n^2 + 9*(-1)^n + 8*A099837(n+3))/36, n>0. - R. J. Mathar, Jun 24 2009

A137228 Minimal total number of edges in a polyiamond consisting of n triangular cells.

Original entry on oeis.org

3, 5, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 54, 55, 57, 59, 60, 62, 63, 65, 67, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 90, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 109, 111, 113
Offset: 1

Views

Author

Tanya Khovanova, Mar 07 2008

Keywords

Crossrefs

Formula

a(n) = (3n + A067628(n))/2.

A290648 a(n) is the smallest number of faces of the triangular lattice required to enclose an area consisting of exactly n faces.

Original entry on oeis.org

6, 12, 14, 16, 18, 19, 18, 20, 22, 23, 22
Offset: 0

Views

Author

Christian Majenz, Aug 08 2017

Keywords

Crossrefs

Triangular version of A235382.

Formula

Conjecture: a(n) = 2*A067628(n) + 6.

A327896 a(n) is the minimum number of tiles needed for constructing a polyiamond with n holes.

Original entry on oeis.org

9, 14, 19, 23, 27, 31, 35, 39, 43, 47, 51, 54, 58, 62, 65, 69, 73, 76, 80, 83, 87, 90, 94, 97, 101, 104, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 169, 173, 176, 179, 183, 186, 189, 193, 196, 199, 203, 206, 209, 213
Offset: 1

Views

Author

Stefano Spezia, Sep 29 2019

Keywords

Comments

For n > 0, it is easy to prove that k(n) = floor((3 + sqrt(3*(3+8*n)))/6) is the unique integer that satisfies the inequalities 3*binomial(k,2) <= n <= 3*binomial(k+1,2) of Theorem 1.1 in Malen and Roldán.
Proof: solving in k the above inequalities for n > 0, one gets that x - 1 <= k <= x, where x = (3 + sqrt(3*(3+8*n)))/6. Since 3*(3+8*n) is never a perfect square, it follows that x is not an integer and k = floor(x). QED.

Crossrefs

Programs

  • Maple
    k:=n->floor((3+sqrt(3*(3+8*n)))/6): a:=n->3*(n+k(n))+1+ceil(2*n/k(n)): seq(a(n), n = 1 .. 58)
  • Mathematica
    k[n_]:=Floor[(3+Sqrt[3*(3+8n)])/6]; a[n_]:=3(n+k[n])+1+Ceiling[2n/k[n]]; Array[a,58]

Formula

a(n) = 3*(n + k(n)) + 1 + ceiling(2*n/k(n)), where k(n) = floor((3 + sqrt(3*(3+8*n)))/6).
Showing 1-7 of 7 results.