cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014563 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) contained in the digits of a(n+1)^2, with a(0)=1.

Original entry on oeis.org

1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 8351, 10456, 11414, 11536, 11563, 17606, 17813, 30287, 36786, 41544, 54927, 56547, 56586, 57363, 62469, 62634, 72813, 72897, 76944, 78345, 95061, 97944, 100963, 101944
Offset: 0

Views

Author

Marc Paulhus, Jan 29 2002

Keywords

Comments

Probably infinite. - David W. Wilson, Jan 29 2002

Examples

			13^2 = 169 and 14 is the next smallest number whose square (in this case 196) contains the digits 1,6,9.
		

Crossrefs

If "contained in" is replaced by "properly contained in" we get A065297.

Programs

  • Haskell
    import Data.List ((\\))
    a014563 n = a014563_list !! n
    a014563_list = 1 : f 1 (drop 2 a000290_list) where
       f x (q:qs) | null $ xs \\ (show q) = y : f y qs
                  | otherwise             = f x qs
                  where y = a000196 q; xs = show (x * x)
    -- Reinhard Zumkeller, Nov 22 2012
  • Mathematica
    snd[n_]:=Module[{k=n+1},While[!AllTrue[Select[Transpose[{DigitCount[n^2],
    DigitCount[k^2]}],#[[1]]>0&],#[[1]]<=#[[2]]&],k++];k]; NestList[ snd,1,40] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2016 *)

A066825 a(1) = 1; set of digits of a(n)^2 is a subset of the set of digits of a(n+1)^2.

Original entry on oeis.org

1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 3267, 3723, 4047, 4554, 4896, 5376, 10136, 13147, 13268, 16549, 20513, 21877, 25279, 26152, 27209, 28582, 31723, 32043, 32286, 33144, 35172, 35337, 35757, 35853
Offset: 1

Views

Author

David W. Wilson, Feb 05 2002

Keywords

Comments

Probably infinite and dense over Z+.

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a066825 n = a066825_list !! (n-1)
    a066825_list = 1 : f 1 (drop 2 a000290_list) where
       f x (q:qs) | all (`elem` show q) xs = y : f y qs
                  | otherwise              = f x qs
                  where y = a000196 q; xs = show (x * x)
    -- Reinhard Zumkeller, Nov 22 2012

A217368 Smallest number having a power that in decimal has exactly n copies of all ten digits.

Original entry on oeis.org

32043, 69636, 643905, 421359, 320127, 3976581, 47745831, 15763347, 31064268, 44626422, 248967789, 85810806, 458764971, 500282265, 2068553967, 711974055, 2652652791, 901992825, 175536645, 3048377607, 3322858521, 1427472867, 3730866429, 9793730157
Offset: 1

Views

Author

James G. Merickel, Oct 01 2012

Keywords

Comments

The exponents that produce the number with a fixed number of copies of each digit are listed in sequence A217378. See there for further comments.
Since we allow A217378(n)=1, the sequence is well defined, with the upper bound a(n) <= 100...99 ~ 10^(10n-1) (n copies of each digit, sorted in increasing order, except for one "1" permuted to the first position). - M. F. Hasler, Oct 05 2012
What is the minimum value of a(n)? Can it be proved that a(n) > 2 for all n? - Charles R Greathouse IV, Oct 16 2012

Examples

			The third term raised to the fifth power (A217378(3)=5), 643905^5 = 110690152879433875483274690625, has three copies of each digit (in its decimal representation), and no number smaller than 643905 has a power with this feature.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 2, t = Table[n, {10}], r = Range[0, 9]}, While[c = Count[ IntegerDigits[k^Floor[ Log[k, 10^(10 n)]]], #] & /@ r; c != t, k++]; k] (* Robert G. Wilson v, Nov 28 2012 *)
  • PARI
    is(n,k)=my(v);for(e=ceil((10*n-1)*log(10)/log(k)), 10*n*log(10)/log(k), v=vecsort(digits(k^e)); for(i=1,9,if(v[i*n]!=i-1 || v[i*n+1]!=i, return(0))); return(1)); 0
    a(n)=my(k=2); while(!is(n,k),k++); k \\ Charles R Greathouse IV, Oct 16 2012

Extensions

a(13)-a(14) from James G. Merickel, Oct 06 2012 and Oct 08 2012
a(15)-a(16) from Charles R Greathouse IV, Oct 17 2012
a(17)-a(19) from Charles R Greathouse IV, Oct 18 2012
a(20) from Charles R Greathouse IV, Oct 22 2012
a(21)-a(24) from Giovanni Resta, May 05 2017
Showing 1-3 of 3 results.