A067659 Number of partitions of n into distinct parts such that number of parts is odd.
0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
Offset: 0
Examples
From _Gus Wiseman_, Jan 09 2021: (Start) The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15): 5 6 7 8 9 A B C D E F 321 421 431 432 532 542 543 643 653 654 521 531 541 632 642 652 743 753 621 631 641 651 742 752 762 721 731 732 751 761 843 821 741 832 842 852 831 841 851 861 921 931 932 942 A21 941 951 A31 A32 B21 A41 B31 C21 54321 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160 (March 2016), Pages 60-75, function q_o(n).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1)))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *) CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *) Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 09 2021 *)
-
PARI
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
-
PARI
N=66; q='q+O('q^N); S=1+2*sqrtint(N); gf=sum(n=1,S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) ); concat( [0], Vec(gf) ) /* Joerg Arndt, Oct 20 2012 */
-
PARI
N=66; q='q+O('q^N); S=1+sqrtint(N); gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) ); concat( [0], Vec(gf) ) \\ Joerg Arndt, Apr 01 2014
Formula
For g.f. see under A067661.
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
Comments