A067666 Sum of squares of prime factors of n (counted with multiplicity).
0, 4, 9, 8, 25, 13, 49, 12, 18, 29, 121, 17, 169, 53, 34, 16, 289, 22, 361, 33, 58, 125, 529, 21, 50, 173, 27, 57, 841, 38, 961, 20, 130, 293, 74, 26, 1369, 365, 178, 37, 1681, 62, 1849, 129, 43, 533, 2209, 25, 98, 54, 298, 177, 2809, 31, 146, 61, 370, 845, 3481
Offset: 1
Keywords
Examples
a(2) = 2^2 = 4; a(45) = a(3*3*5) = 3^2 + 3^2 + 5^2 = 43.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Puzzle 625. Sum of squares of prime divisors, The Prime Puzzles and Problems Connection.
- Carlos Rivera, Puzzle 1019. Follow-up to Puzzle 625, The Prime Puzzles and Problems Connection.
Programs
-
Maple
A067666 := proc(n) add(op(2,pe)*op(1,pe)^2, pe=ifactors(n)[2]) ; end proc: seq(A067666(n),n=1..100) ;# R. J. Mathar, Jul 31 2024
-
Mathematica
Join[{0},Table[Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]^2],{n,2,60}]] (* Harvey P. Dale, Dec 24 2012 *) Join[{0}, Table[Total[#[[1]]^2*#[[2]] & /@ FactorInteger[n]], {n, 2, 60}]] (* Zak Seidov, Apr 18 2013 *)
-
PARI
a(n)=local(fm,t);fm=factor(n);t=0;for(k=1,matsize(fm)[1],t+=fm[k,1]^2*fm[k,2]);t \\ Franklin T. Adams-Watters, May 03 2009
-
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^2*f[k,2]); \\ Michel Marcus, Sep 19 2020
Formula
a(x*y) = a(x) + a(y); a(p^k) = k*p^2 for p prime.
Totally additive with a(p) = p^2.
Extensions
Values through a(59) verified by Franklin T. Adams-Watters, May 03 2009
Comments