A067698 Positive integers such that sigma(n) >= exp(gamma) * n * log(log(n)).
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180, 240, 360, 720, 840, 2520, 5040
Offset: 1
Examples
9 is in the sequence since sigma(9) = 13 > 12.6184... = exp(gamma) * 9 * log(log(9)).
Links
- Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 15, No. 2 (2006), p. 251-256.
- Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis, Integers 11 (2011), #A33.
- Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, On SA, CA, and GA numbers, The Ramanujan Journal, Vol. 29 (2012), pp. 359-384; arXiv preprint, arXiv:1112.6010 [math.NT], 2011-2012.
- Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, The American Mathematical Monthly, Vol. 109, No. 6 (2002), pp. 534-543; alternative copy; arXiv preprint, arXiv:math/0008177 [math.NT], 2000-2001.
- Thomas Morrill and David John Platt, Robin's inequality for 20-free integers, Integers, Vol. 21 (2021), #A28.
- Guy Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.
- Eric Weisstein's World of Mathematics, Gronwall's Theorem.
- Eric Weisstein's World of Mathematics, Robin's Theorem.
Crossrefs
Programs
-
Maple
with (numtheory): expgam := exp(evalf(gamma)): for i from 2 to 6000 do: a := sigma (i): b := expgam*i*evalf(ln(ln(i))): if a >= b then print (i, a, b): fi: od:
-
Mathematica
fQ[n_] := DivisorSigma[1, n] > n*Exp@ EulerGamma*Log@ Log@n; lst = {}; Do[ If[ fQ[n], AppendTo[lst, n]], {n,2,10^4}]; lst (* Robert G. Wilson v, May 16 2003 *) Select[Range[2,5050], Exp[EulerGamma] # Log[Log[#]]-DivisorSigma[1,#]<0 &] (* Ant King, Feb 28 2013 *)
-
PARI
is(n)=sigma(n) >= exp(Euler) * n * log(log(n)) \\ Charles R Greathouse IV, Feb 08 2017
-
Python
from sympy import divisor_sigma, EulerGamma, E, log print([n for n in range(2, 5041) if divisor_sigma(n) >= (E**EulerGamma * n * log(log(n)))]) # Karl-Heinz Hofmann, Apr 22 2022
Extensions
Edited by N. J. A. Sloane at the suggestion of Max Alekseyev, Jul 17 2007
New name from Jud McCranie, Aug 14 2017
Comments