cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066232 Numbers k such that phi(k) = phi(k-2) - phi(k-1).

Original entry on oeis.org

195, 3531, 9339, 27231, 46795, 78183, 90195, 112995, 135015, 437185, 849405, 935221, 1078581, 1283601, 1986975, 2209585, 2341185, 2411175, 2689695, 2744145, 3619071, 3712545, 4738185, 5132985, 6596121, 7829031, 8184715, 12176109
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

As in A065557, all terms listed here are odd. Problem: Prove that this holds in general.

Examples

			Phi(195) = 96 = 192-96 = phi(193)-phi(194).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 10^6], EulerPhi[ # ] == EulerPhi[ # - 2] - EulerPhi[ # - 1] &]
  • PARI
    isok(k) = { k > 2 && eulerphi(k) == eulerphi(k - 2) - eulerphi(k - 1) } \\ Harry J. Smith, Feb 07 2010

Formula

a(n) = A220160(n) + 1 = A197112(n) + 2. - Andrew Howroyd, Dec 19 2024

Extensions

a(13)-a(28) from Harry J. Smith, Feb 07 2010

A066231 Numbers n such that phi(n) = phi(n-1) - phi(n-2).

Original entry on oeis.org

6, 8, 26, 78, 218, 306, 3666, 4646, 5066, 8816, 12206, 12546, 19878, 20436, 24236, 29546, 37736, 47996, 60116, 72086, 73026, 77046, 87476, 121146, 126056, 129246, 149756, 190268, 234636, 247856, 273296, 275724, 419366, 531236, 553476, 621726
Offset: 1

Views

Author

Joseph L. Pe, Dec 18 2001

Keywords

Comments

Question: Are all terms of this sequence even? (Compare A065557, whose terms could be all odd and squarefree.)

Examples

			phi(8) = 4 = 6-2 = phi(7) - phi(6).
		

Crossrefs

Programs

Extensions

a(24)-a(36) from Harry J. Smith, Feb 06 2010

A067843 Least solution k>n of phi(k-n)+phi(k+n)=phi(2k).

Original entry on oeis.org

5, 10, 7, 10, 11, 12, 35, 14, 13, 22, 55, 22, 19, 70, 19, 22, 85, 26, 77, 26, 27, 110, 55, 34, 55, 38, 31, 34, 119, 38, 65, 44, 41, 52, 65, 46, 185, 154, 43, 46, 143, 54, 215, 70, 57, 110, 161, 58, 187, 68, 67, 76, 203, 62, 175, 62, 61, 76, 95, 74, 67, 130, 71, 88, 95, 82, 115, 74, 73, 130, 215
Offset: 1

Views

Author

Joseph L. Pe, Feb 11 2002

Keywords

Comments

From Robert Israel, Jun 08 2018: (Start)
The first n for which a(n)-n is odd is 239.
If n+2 and n+4 are twin primes (i.e. n+2 is in A001359), then a(n) <= n+4.
Conjecture: a(n) >= n+4 for all n. (End)

Examples

			k = 10 is the smallest solution of phi(k-2)+phi(k+2)=phi(2k). So a(2) = 10.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
         for k from n+1 do if numtheory:-phi(k-n)+numtheory:-phi(k+n)=numtheory:-phi(2*k) then return k fi od:
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 08 2018
  • Mathematica
    f[k_] := Module[{i = k + 1}, While[EulerPhi[i - k] + EulerPhi[i + k] != EulerPhi[2 i], i++ ]; i]; Table[f[n], {n, 1, 40}]

Extensions

More terms from Robert Israel, Jun 08 2018
Showing 1-3 of 3 results.