A067707 a(n) = 3*n^2 + 12*n.
15, 36, 63, 96, 135, 180, 231, 288, 351, 420, 495, 576, 663, 756, 855, 960, 1071, 1188, 1311, 1440, 1575, 1716, 1863, 2016, 2175, 2340, 2511, 2688, 2871, 3060, 3255, 3456, 3663, 3876, 4095, 4320, 4551, 4788, 5031, 5280, 5535, 5796, 6063, 6336, 6615, 6900
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Gear Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[3*n^2 + 12*n: n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
-
Mathematica
Select[ Range[10000], IntegerQ[ Sqrt[ 12(12 + # )]] & ] CoefficientList[Series[3*(5-3*x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
-
PARI
a(n)=3*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
Formula
G.f.: 3*x*(5 - 3*x)/(1 - x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: 3*x*(x + 5)*exp(x). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 25/144.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/144. (End)
Comments