A067745 Numerator of ((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1))).
1, 1, 7, 5, 13, 1, 19, 11, 25, 7, 31, 17, 37, 5, 43, 23, 49, 13, 55, 29, 61, 1, 67, 35, 73, 19, 79, 41, 85, 11, 91, 47, 97, 25, 103, 53, 109, 7, 115, 59, 121, 31, 127, 65, 133, 17, 139, 71, 145, 37, 151, 77, 157, 5, 163, 83, 169, 43, 175, 89, 181, 23, 187, 95, 193, 49, 199
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- D. S. Mitrinovic and Slavko Simic, Special Functions from Long Ago: 5626, Amer. Math. Monthly 109, (2002), p. 83-84.
Programs
-
Magma
[Numerator(((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1)))): n in [1..80]]; // Vincenzo Librandi, Feb 16 2015
-
Maple
f:= n -> (3*n-2)/2^padic:-ordp(3*n-2,2): map(f, [$1..100]); # Robert Israel, May 16 2017
-
Mathematica
(* Assuming the above conjecture: *) a067745[n_] := (3*n - 2)/2^IntegerExponent[3*n - 2, 2]; Table[a067745[n], {n, 67}] (* L. Edson Jeffery, Feb 15 2015 *)
-
PARI
vector(80, n, numerator(((3*n - 2)/(n^(2*n - 1)*(2*n - 1)*4^(n - 1))))) \\ Michel Marcus, Feb 16 2015
Formula
Assuming the above conjecture, a(n) = a((8+(3*n-2)*4^k)/12), for all k >= 1. - L. Edson Jeffery, Feb 15 2015
a(n) = A000265(3*n-2). - R. J. Mathar, Aug 23 2020
Sum_{k=1..n} a(k) ~ n^2. - Amiram Eldar, Aug 26 2024
G.f.: Sum_{k>=1} ((3 + 2*(-1)^(k + 1))*x^(3*2^(k - 1) - (2*(-2)^(k - 1))/3 - 1/3) + (3 - 2*(-1)^(k + 1))*x^(2^(k - 1)*(3 + 2*(-1)^k)/3 - 1/3))/(x^(2^(k + 1)) - 2*x^(2^k) + 1). - Miles Wilson, Jan 12 2025
Comments