A067764 Numerators of the coefficients in exp(x/(1-x)) power series.
1, 1, 3, 13, 73, 167, 4051, 37633, 43817, 4596553, 58941091, 274691047, 12470162233, 202976401213, 1178339174801, 65573803186921, 99264170666917, 994319127823939, 588633468315403843, 13564373693588558173, 109232642628695218147, 752832094524169066031
Offset: 0
Examples
Example for first formula. 1/1! + 3/2! + 3/3! + 1/4! = 73/24. Example for 2nd formula. A000332 = 0, 0, 0, 0, 1, 5, 15, 35, 70, 126, ...; a(4) = 0/0! + 1/1! + 5/2! + 15/3! + 35/4! + 70/5! + 126/6! + ... = 73*e/24. exp(x/(1-x)) = 1 + x + 3/2*x^2 + 13/6*x^3 + 73/24*x^4 + 167/40*x^5 + 4051/720*x^6 + 37633/5040*x^7 + 43817/4480*x^8 + 4596553/362880*x^9 + ... .
References
- O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Archiv d. Math. u. Phys. (3), Vol. 22, pp. 329-340, 1914.
- H. Fischer, Eine Theorie komplexwertiger Abelscher Limitierungsmethoden (A theory of complex valued abelian limitation methods), Dissertation (1987), pp. 29-32.
- K. Zeller, W. Beekmann, Theorie der Limitierungsverfahren, Springer-Verlag, Berlin (1970).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..445
- D. Borwein, On methods of summability based on power series, Proc. Royal Soc. Edinburgh, Sect. A, Vol. 64(04), Jan. 1957, pp 342-349.
- Richard P. Brent, M. L. Glasser, and Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
- K. Knopp, Theory and Application of Infinite Series, Dover, 1954, p. 547.
Crossrefs
Cf. A067653.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-x)))); [Numerator(b[n]): n in [1..m]]; // G. C. Greubel, Dec 04 2018 -
Maple
b:= proc(n) option remember; `if`(n=0, 1, add((n-k)*b(k), k=0..n-1)/n) end: a:= n-> numer(b(n)): seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
-
Mathematica
Table[Numerator@ SeriesCoefficient[Exp[x/(1 - x)], {x, 0, n}], {n, 19}] (* Michael De Vlieger, Dec 14 2015 *) r[n_] := If[n == 0, 1, Hypergeometric1F1[1 - n, 2, -1]]; Table[Numerator@ r[n], {n, 0, 21}] (* Peter Luschny, Feb 02 2019 *)
-
PARI
a(n) = numerator(sum(k=1, n, binomial(n-1, k-1)/k!)); \\ Altug Alkan, Dec 14 2015
-
SageMath
[1] + [numerator(sum(binomial(n-1, j-1)/factorial(j) for j in (1..n))) for n in (1..30)] # G. C. Greubel, Dec 04 2018
Formula
a(n) is the numerator of Sum_{i=1..n} binomial(n-1, i-1)/i!.
a(n) is also the numerator of (Sum_{m>=0} binomial(n+m-1,n)/m!)/e, with A067653(n) as the denominator. See as example A000332 = binomial(n,4) below. - Richard R. Forberg, Dec 26 2013
a(n) = numerator(hypergeom([1 - n], [2], -1)) for n > 0. - Peter Luschny, Feb 02 2019
Extensions
a(0)=1 prepended by Alois P. Heinz, May 12 2016
Comments