cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067807 Numbers k such that sigma(k)^2 > 2*sigma(k^2).

Original entry on oeis.org

24, 36, 40, 48, 60, 72, 80, 84, 90, 96, 108, 112, 120, 126, 132, 140, 144, 156, 160, 168, 176, 180, 192, 200, 204, 208, 210, 216, 224, 228, 240, 252, 264, 270, 276, 280, 288, 300, 312, 320, 324, 336, 348, 352, 360, 372, 378, 384, 392, 396, 400, 408, 416, 420
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Comments

For every n>1 sigma(n)^2 > sigma(n^2).
Limit_{n->oo} a(n)/n appears to exist and is near 8.0; e.g., a(124094) = 1000000. - Paul D. Hanna, Sep 22 2011
We also have a(12438441) = 10^8, a(124240921) = 10^9, and a(1242729194) = 10^10. - Giovanni Resta, Jun 15 2018
All the terms are abundant numbers (A005101). - Amiram Eldar, May 03 2025

Examples

			The limit a(n)/n seems to be near 8.0:
        n     a(n)    a(n)/n
  ------- --------  ----------
   124094  1000000  8.05840...
   248310  2000000  8.05444...
   372503  3000000  8.05362...
   496826  4000000  8.05110...
   621163  5000000  8.04941...
   745602  6000000  8.04718...
   870189  7000000  8.04422...
   994799  8000000  8.04182...
  1119336  9000000  8.04048...
  1243884 10000000  8.03933...
		

Crossrefs

Cf. A000203 (sigma), A195735, A065764.
Subsequence of A005101.

Programs

  • Mathematica
    Select[Range[500],DivisorSigma[1,#]^2>2DivisorSigma[1,#^2]&]  (* Harvey P. Dale, Mar 30 2011 *)
  • PARI
    {for(n=1,8000,if(2*sigma(n^2)-sigma(n)^2 < 0,print1(n,",")))} \\ Paul D. Hanna, Sep 22 2011