cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067817 a(n) = Sum_{r|n, s|n, t|n, r

Original entry on oeis.org

0, 0, 0, 8, 0, 72, 0, 120, 27, 180, 0, 1400, 0, 336, 360, 1240, 0, 3285, 0, 3948, 672, 792, 0, 15960, 125, 1092, 1080, 8240, 0, 25992, 0, 11160, 1584, 1836, 1680, 57065, 0, 2280, 2184, 46620, 0, 56352, 0, 23592, 18612, 3312, 0, 150040, 343, 29955, 3672
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2002

Keywords

Crossrefs

Column k=3 of A224381.

Programs

  • Maple
    a:= n-> coeff(expand(mul(1+d*x, d=numtheory[divisors](n))), x, 3):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 18 2023
  • Mathematica
    a[n_] := Module[{d = DivisorSigma[{1, 2, 3}, n]}, (d[[1]]^3 - 3*d[[1]]*d[[2]] + 2*d[[3]]) / 6]; Array[a, 50] (* Amiram Eldar, Jan 03 2025 *)
  • PARI
    a(n) = 1/6*(sigma(n, 1)^3 - 3*sigma(n, 1)*sigma(n, 2) + 2*sigma(n, 3)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = (1/3!)*(sigma_1(n)^3 - 3*sigma_1(n)*sigma_2(n) + 2*sigma_3(n)).
From Amiram Eldar, Jan 03 2025: (Start)
Dirichlet g.f.: (zeta(s)*zeta(s-3)/6) * (zeta(s-1)*zeta(s-2) * (f(s) - 3/zeta(2*s-3)) + 2), where f(s) = Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (7/96) * zeta(3) * zeta(6) * Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) - zeta(2)*zeta(3)*zeta(4)/(8*zeta(5)) + zeta(4)/12 = 0.085094994884972381542... . (End)