cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067869 Numbers n such that n and 2^n end with the same 5 digits.

Original entry on oeis.org

48736, 148736, 248736, 348736, 448736, 548736, 648736, 748736, 848736, 948736, 1048736, 1148736, 1248736, 1348736, 1448736, 1548736, 1648736, 1748736, 1848736, 1948736, 2048736, 2148736, 2248736, 2348736, 2448736, 2548736
Offset: 1

Views

Author

Benoit Cloitre, Mar 07 2002

Keywords

Crossrefs

Cf. A064541.
Subsequence of A067844, A067845, A067846, and A067847.

Programs

  • PARI
    isok(n) = (2^n - n) % 100000 == 0; \\ Michel Marcus, Nov 23 2013

Formula

a(n) = 48736+10^5(n-1).
a(n) = 2*a(n-1)-a(n-2). G.f.: x*(48736+51264*x)/(1-x)^2. - Colin Barker, Jun 05 2012

A067865 Numbers n such that n and 2^n end with the same two digits.

Original entry on oeis.org

36, 136, 236, 336, 436, 536, 636, 736, 836, 936, 1036, 1136, 1236, 1336, 1436, 1536, 1636, 1736, 1836, 1936, 2036, 2136, 2236, 2336, 2436, 2536, 2636, 2736, 2836, 2936, 3036, 3136, 3236, 3336, 3436, 3536, 3636, 3736, 3836, 3936, 4036, 4136, 4236, 4336
Offset: 1

Views

Author

Benoit Cloitre, Mar 07 2002

Keywords

Comments

2^36=68719476736 hence 36 is in the sequence.

Crossrefs

Cf. A064541.
Subsequence of A067844.

Programs

  • PARI
    isok(n) = (2^n - n) % 100 == 0; \\ Michel Marcus, Nov 23 2013

Formula

a(n) = 36+100(n-1).
a(n) = 2*a(n-1)-a(n-2). G.f.: 4*x*(9+16*x)/(1-x)^2. [Colin Barker, Dec 01 2012]

A067866 Numbers n such that n and 2^n end with the same three digits.

Original entry on oeis.org

736, 1736, 2736, 3736, 4736, 5736, 6736, 7736, 8736, 9736, 10736, 11736, 12736, 13736, 14736, 15736, 16736, 17736, 18736, 19736, 20736, 21736, 22736, 23736, 24736, 25736, 26736, 27736, 28736, 29736, 30736, 31736, 32736, 33736, 34736
Offset: 1

Views

Author

Benoit Cloitre, Mar 07 2002

Keywords

Crossrefs

Cf. A064541.
Subsequence of A067844 and A067845.

Programs

  • PARI
    isok(n) = (2^n - n) % 1000 == 0; \\ Michel Marcus, Nov 23 2013

Formula

a(n) = 736 + 1000(n-1).
a(n) = 2*a(n-1)-a(n-2). G.f.: 8*x*(92+33*x)/(1-x)^2. [Colin Barker, Dec 01 2012]

A067867 Numbers n such that n and 2^n end with the same 4 digits.

Original entry on oeis.org

8736, 18736, 28736, 38736, 48736, 58736, 68736, 78736, 88736, 98736, 108736, 118736, 128736, 138736, 148736, 158736, 168736, 178736, 188736, 198736, 208736, 218736, 228736, 238736, 248736, 258736, 268736, 278736, 288736, 298736, 308736
Offset: 1

Views

Author

Benoit Cloitre, Mar 07 2002

Keywords

Crossrefs

Cf. A064541.
Subsequence of A067844, A067845 and A067846.

Programs

  • PARI
    isok(n) = (2^n - n) % 10000 == 0; \\ Michel Marcus, Nov 23 2013

Formula

a(n) = 8736 + 10^4(n-1).
a(n) = 2*a(n-1)-a(n-2). G.f.: 16*x*(546+79*x)/(1-x)^2. [Colin Barker, Dec 01 2012]
Showing 1-4 of 4 results.