cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067858 J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n.

Original entry on oeis.org

1, 3, 26, 240, 3124, 45864, 823542, 16711680, 387400806, 9990233352, 285311670610, 8913906892800, 302875106592252, 11111328602468784, 437893859848932344, 18446462598732840960, 827240261886336764176, 39346257879101671328376, 1978419655660313589123978
Offset: 1

Views

Author

Leroy Quet, Feb 15 2002

Keywords

Crossrefs

Main diagonal of A059379, A059380.

Programs

  • Maple
    with(numtheory):
    a:= n-> n^n*mul(1-1/p^n, p=factorset(n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jan 09 2015
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A067858[n_]:=JordanTotient[n,n]; Array[A067858,20]

Formula

J_n(n) = sum{k|n} mu(n/k) k^n, where mu() is the Moebius function.