A059379
Array of values of Jordan function J_k(n) read by antidiagonals (version 1).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840
Offset: 1
Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
- R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.
-
J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
#alternative
A059379 := proc(n,k)
add(d^k*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
end proc:
seq(seq(A059379(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, Nov 23 2018
-
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
A059379[n_]:=JordanTotient[A004736[n],A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
-
jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
A059379(n)=jordantot(A004736(n),A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011
-
from functools import cache
def MoebiusTrans(a, i):
@cache
def mb(n, d = 1):
return d % n and -mb(d, n % d < 1) + mb(n, d + 1) or 1 // n
def mob(m, n): return mb(m // n) if m % n == 0 else 0
return sum(mob(i, d) * a(d) for d in range(1, i + 1))
def Jrow(n, size):
return [MoebiusTrans(lambda m: m ** n, k) for k in range(1, size)]
for n in range(1, 8): print(Jrow(n, 13))
# Alternatively:
from sympy import primefactors as prime_divisors
from fractions import Fraction as QQ
from math import prod as product
def J(n: int, k: int) -> int:
t = QQ(pow(k, n), 1)
s = product(1 - QQ(1, pow(p, n)) for p in prime_divisors(k))
return (t * s).numerator # the denominator is always 1
for n in range(1, 8): print([J(n, k) for k in range(1, 13)])
# Peter Luschny, Dec 16 2023
A059380
Array of values of Jordan function J_k(n) read by antidiagonals (version 2).
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 7, 8, 2, 1, 15, 26, 12, 4, 1, 31, 80, 56, 24, 2, 1, 63, 242, 240, 124, 24, 6, 1, 127, 728, 992, 624, 182, 48, 4, 1, 255, 2186, 4032, 3124, 1200, 342, 48, 6, 1, 511, 6560, 16256, 15624, 7502, 2400, 448, 72, 4, 1, 1023, 19682
Offset: 1
Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
- R. Sivaramakrishnan, The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187
-
J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
-
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
A059380[n_]:=JordanTotient[A002260[n],A004736[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
-
jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
A059380(n)=jordantot(A002260(n),A004736(n)); \\ Enrique Pérez Herrero, Jan 08 2011
A321222
a(n) = Sum_{d|n} mu(d)*d^n.
Original entry on oeis.org
1, -3, -26, -15, -3124, 45864, -823542, -255, -19682, 9990233352, -285311670610, 2176246800, -302875106592252, 11111328602468784, 437893859848932344, -65535, -827240261886336764176, 101559568985784, -1978419655660313589123978, 99999904632567310800
Offset: 1
-
Table[Sum[MoebiusMu[d] d^n, {d, Divisors[n]}], {n, 20}]
nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] (k x)^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Product[1 - Boole[PrimeQ[d]] d^n, {d, Divisors[n]}], {n, 20}]
-
a(n) = sumdiv(n, d, moebius(d)*d^n) \\ Andrew Howroyd, Nov 06 2018
A320974
a(n) = n^n * Product_{p|n, p prime} (1 + 1/p^n).
Original entry on oeis.org
1, 5, 28, 272, 3126, 47450, 823544, 16842752, 387440172, 10009766650, 285311670612, 8918294011904, 302875106592254, 11112685048647250, 437893920912786408, 18447025548686262272, 827240261886336764178, 39346558271492178663450, 1978419655660313589123980
Offset: 1
-
Table[n^n Product[1 + Boole[PrimeQ[d]]/d^n, {d, Divisors[n]}], {n, 19}]
Table[SeriesCoefficient[Sum[MoebiusMu[k]^2 PolyLog[-n, x^k], {k, 1, n}], {x, 0, n}], {n, 19}]
Table[Sum[MoebiusMu[n/d]^2 d^n, {d, Divisors[n]}], {n, 19}]
A347251
a(n) = Sum_{d|n} mu(d)*mu(n/d)*d^n.
Original entry on oeis.org
1, -5, -28, 16, -3126, 47450, -823544, 0, 19683, 10009766650, -285311670612, -2176786432, -302875106592254, 11112685048647250, 437893920912786408, 0, -827240261886336764178, -101560344088905, -1978419655660313589123980, -100000000000001048576
Offset: 1
-
a[n_] := DivisorSum[n, MoebiusMu[#] * MoebiusMu[n/#] * #^n &]; Array[a, 20] (* Amiram Eldar, Aug 24 2021 *)
-
a(n) = sumdiv(n, d, moebius(d)*moebius(n/d)*d^n);
A344210
a(n) = Sum_{d|n} mu(n/d) * d^n / phi(n).
Original entry on oeis.org
1, 3, 13, 120, 781, 22932, 137257, 4177920, 64566801, 2497558338, 28531167061, 2228476723200, 25239592216021, 1851888100411464, 54736732481116543, 2305807824841605120, 51702516367896047761, 6557709646516945221396, 109912203092239643840221
Offset: 1
-
Table[DivisorSum[n,MoebiusMu[n/#]*#^n/EulerPhi[n]&],{n,20}] (* Giorgos Kalogeropoulos, May 13 2021 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*d^n)/eulerphi(n);
A332617
a(n) = Sum_{k=1..n} J_n(k), where J is the Jordan function, J_n(k) = k^n * Product_{p|k, p prime} (1 - 1/p^n).
Original entry on oeis.org
1, 4, 34, 336, 4390, 66312, 1197858, 24612000, 574002448, 14903406552, 427622607366, 13419501812640, 457579466056498, 16840326075104280, 665473192580864556, 28101209228393371200, 1262896789586657015796, 60182268296582518426368, 3031282541337682050032664
Offset: 1
Cf.
A000010,
A002088,
A007434,
A059376,
A059377,
A059378,
A059379,
A059380,
A067858,
A319194,
A321879.
-
[&+[&+[MoebiusMu(k div d)*d^n:d in Divisors(k)]:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 17 2020
-
Table[Sum[Sum[MoebiusMu[k/d] d^n, {d, Divisors[k]}], {k, 1, n}], {n, 1, 19}]
Table[SeriesCoefficient[(1/(1 - x)) Sum[Sum[MoebiusMu[k] j^n x^(k j), {j, 1, n}], {k, 1, n}], {x, 0, n}], {n, 1, 19}]
Showing 1-7 of 7 results.