A067885 Products of exactly 6 distinct primes.
30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 72930, 79170, 81510, 82110, 84630, 85470, 91770, 94710, 98670, 99330, 101010, 102102, 103530, 106590, 108570, 110670, 111930, 114114, 115710, 117390, 122430, 123690, 124410, 125970, 128310
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
Select[Range[125000],PrimeNu[#]==PrimeOmega[#]==6&] (* Harvey P. Dale, May 14 2014 *)
-
PARI
is(n)=factor(n)[,2]==[1,1,1,1,1,1]~ \\ Charles R Greathouse IV, Sep 14 2015
-
PARI
is(n)=omega(n)==6 && bigomega(n)==6 \\ Hugo Pfoertner, Dec 18 2018
-
PARI
list(lim)=lim\=1; my(v=List(), L1,L2,L3,L4,P4,P5); forprime(p=13,lim\2310, L1=lim\p; forprime(q=11,min(L1\210,p-2), L2=L1\q; forprime(r=7, min(L2\30,q-2), L3=L2\r; forprime(s=5,min(L3\6,r-2), L4=L3\s; P4=p*q*r*s; forprime(t=3, min(L4\2,s-2), P5=P4*t; forprime(u=2, min(L4\t,t-1), listput(v,P5*u))))))); Set(v) \\ Charles R Greathouse IV, Aug 27 2021
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A067885(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,6))) kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax # Chai Wah Wu, Aug 29 2024