cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067885 Products of exactly 6 distinct primes.

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 72930, 79170, 81510, 82110, 84630, 85470, 91770, 94710, 98670, 99330, 101010, 102102, 103530, 106590, 108570, 110670, 111930, 114114, 115710, 117390, 122430, 123690, 124410, 125970, 128310
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Crossrefs

Subsequence of A074969. - R. J. Mathar, Nov 24 2009
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.

Programs

  • Mathematica
    Select[Range[125000],PrimeNu[#]==PrimeOmega[#]==6&] (* Harvey P. Dale, May 14 2014 *)
  • PARI
    is(n)=factor(n)[,2]==[1,1,1,1,1,1]~ \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n)=omega(n)==6 && bigomega(n)==6 \\ Hugo Pfoertner, Dec 18 2018
    
  • PARI
    list(lim)=lim\=1; my(v=List(), L1,L2,L3,L4,P4,P5); forprime(p=13,lim\2310, L1=lim\p; forprime(q=11,min(L1\210,p-2), L2=L1\q; forprime(r=7, min(L2\30,q-2), L3=L2\r; forprime(s=5,min(L3\6,r-2), L4=L3\s; P4=p*q*r*s; forprime(t=3, min(L4\2,s-2), P5=P4*t; forprime(u=2, min(L4\t,t-1), listput(v,P5*u))))))); Set(v) \\ Charles R Greathouse IV, Aug 27 2021
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A067885(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,6)))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024

Formula

{k: A001221(k) = A001222(k) = 6}. - R. J. Mathar, Jul 18 2023