A067889 Primes sandwiched between two numbers having same number of divisors.
7, 19, 41, 103, 137, 199, 307, 349, 491, 739, 823, 919, 1013, 1061, 1193, 1277, 1289, 1409, 1433, 1447, 1481, 1543, 1609, 1667, 1721, 1747, 2153, 2357, 2441, 2617, 2683, 2777, 3259, 3319, 3463, 3581, 3593, 3769, 3797, 3911, 3943, 4013, 4217, 4423, 4457
Offset: 1
Examples
7 is a member as 6 and 8 both have 4 divisors; 19 is a member as 18 and 20 both have 6 divisors each.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Programs
-
Maple
with(numtheory):j := 0:for i from 1 to 10000 do b := ithprime(i): if nops(divisors(b-1))=nops(divisors(b+1)) then j := j+1:a[j] := b:fi:od:seq(a[k],k=1..j);
-
Mathematica
Prime[ Select[ Range[ 700 ], Length[ Divisors[ Prime[ #1 ] - 1 ]] == Length[ Divisors[ Prime[ #1 ] + 1 ]] & ]] Select[Prime[Range[1000]],DivisorSigma[0,#-1]==DivisorSigma[0,#+1]&] (* Harvey P. Dale, Jun 08 2018 *)
-
PARI
is_A067889(p)=numdiv(p-1)==numdiv(p+1)&&isprime(p) \\ M. F. Hasler, Jul 31 2015
Formula
a(n) seems curiously to be asymptotic to 25*n*log(n). [From the number of terms up to 10^8, 10^9, 10^10 and 10^11, i.e., 306147, 2616930, 22835324 and 202105198, this constant can be estimated by 25.858..., 25.858..., 25.845... and 25.872..., respectively. - Amiram Eldar, Jun 28 2022]
Comments