cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A067888 Numbers k such that tau(k+1) = tau(k-1) where tau(k) = A000005(k).

Original entry on oeis.org

4, 6, 7, 9, 12, 18, 19, 30, 34, 41, 42, 51, 55, 56, 60, 72, 86, 92, 94, 102, 103, 108, 124, 129, 137, 138, 142, 144, 150, 153, 160, 180, 183, 184, 185, 186, 192, 198, 199, 202, 204, 214, 216, 218, 220, 228, 231, 236, 240, 243, 244, 247, 248, 249, 266, 270, 282
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Comments

If (p,p+2) are twin primes, then the composite number p+1 is in this sequence. The primes occurring in this sequence are listed in A067889. See A055574 for the analog with sigma instead of tau. - M. F. Hasler, Aug 06 2015

Crossrefs

Equals A062832 + 1. - Michel Marcus, Feb 11 2018

Programs

  • Mathematica
    Select[Range[300], Equal @@ DivisorSigma[0, # + {-1, 1}] &] (* Amiram Eldar, Jan 23 2025 *)
  • PARI
    is_A067888(n)=n>1&&numdiv(n-1)==numdiv(n+1) \\ M. F. Hasler, Aug 06 2015

A067891 Primes p such that sigma(p+1) = sigma(p-1).

Original entry on oeis.org

367, 919, 30593, 95393, 117571, 124759, 147341, 197261, 334541, 344417, 463219, 732257, 755081, 931757, 982759, 1996759, 2401219, 2962697, 3013447, 4722941, 7892827, 13333097, 13358407, 17946259, 19828483, 19855471, 19904981
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Crossrefs

Cf. A067889 (analog with tau).

Programs

  • Mathematica
    fQ[p_] := DivisorSigma[1, p - 1] == DivisorSigma[1, p + 1]; p = 2; lst = {}; While[p < 100000000, If[fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 03 2009 and modified by Robert G. Wilson v, May 08 2016 *)
  • PARI
    for(n=2,10^8,if(isprime(n) && sigma(n+1)==sigma(n-1),print1(n,","))) \\ It is more efficient to use forprime(...).
    
  • PARI
    is_A067891(p)=sigma(p-1)==sigma(p+1)&&isprime(p) \\ M. F. Hasler, Jul 31 2015

Extensions

More terms from Rick L. Shepherd, Apr 19 2002

A171667 Lesser of a pair of twin primes (p,p+2) sandwiched between two numbers (p-1,p+3) having the same number of divisors.

Original entry on oeis.org

11, 29, 59, 431, 599, 827, 1031, 1319, 1619, 1787, 2111, 2141, 2267, 2687, 2711, 3299, 3329, 3371, 3527, 3671, 4001, 4091, 4229, 4259, 5021, 5099, 5519, 5867, 6299, 6659, 6779, 7331, 7457, 8087, 8231, 8387, 8627, 8861, 8999, 9419, 9461, 9767, 10139
Offset: 1

Views

Author

Keywords

Examples

			First term 11: 10={1,2,5,10},14={1,2,7,14} Second term 29: 28={1,2,4,7,14,28},32={1,2,4,8,16,32}
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Divisors[n]]; lst={};Do[p=Prime[n];If[PrimeQ[p+2]&&f[p-1]==f[p+3],AppendTo[lst,p]],{n,7!}];lst
    Select[Range[11000],DivisorSigma[0,#-1]==DivisorSigma[0,#+3]&&AllTrue[{#, #+2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 04 2019 *)
  • PARI
    forprime(p=o=0,1e4,(2+o==o=p)&&numdiv(p-3)==numdiv(p+1)&&print1(p-2",")) \\ M. F. Hasler, Jul 31 2015

Extensions

Name edited by M. F. Hasler, Jul 31 2015

A074460 Primes which are sandwiched between two numbers having the same unordered canonical form.

Original entry on oeis.org

19, 307, 349, 491, 739, 919, 1013, 1061, 1277, 1667, 1747, 2357, 2683, 3259, 3581, 3797, 3943, 4013, 4597, 4877, 4987, 5051, 5741, 6067, 7757, 9349, 9413, 9739, 9851, 9923, 9949, 10133, 10243, 10949, 11093, 11149, 12619, 12941, 12979, 13879, 14051
Offset: 1

Views

Author

Robert G. Wilson v, Aug 22 2002

Keywords

Crossrefs

Subsequence of A067889.

Programs

  • Mathematica
    f[n_] := Flatten[Table[{ # [[2]]}] & /@ FactorInteger[n]]; Prime[ Select[ Range[1700], Sort[ f[ Prime[ # ] - 1]] == Sort[ f[ Prime[ # ] + 1]] & ]]

A145337 a(n) = d(p(n)+1) - d(p(n)-1), where d(m) = the number of divisors of m, p(n) = the n-th prime.

Original entry on oeis.org

1, 1, 1, 0, 2, -2, 1, 0, 4, 2, -2, -5, 0, -2, 6, 2, 8, -8, -2, 4, -8, 2, 8, 4, -6, -1, 0, 8, -4, -2, -4, 4, 0, 4, 6, -4, -8, -4, 12, 2, 14, -10, 6, -10, 3, 0, -10, 4, 8, -4, 4, 12, -14, 10, -1, 12, 10, -6, -8, -8, -2, 6, 0, 8, -12, 2, -10, -14, 8, 0, -4, 20, 2, -4, -4, 12, 10, -14, -7, -8
Offset: 0

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A008329(n) - A008328(n). - R. J. Mathar, Oct 10 2008

Extensions

More terms from R. J. Mathar and Ray Chandler, Oct 10 2008

A145339 a(n) = the minimum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 4, 6, 6, 4, 8, 6, 4, 6, 4, 4, 6, 8, 4, 8, 4, 8, 6, 8, 8, 4, 8, 8, 8, 8, 8, 8, 6, 8, 4, 6, 4, 6, 4, 8, 8, 4, 9, 12, 6, 8, 4, 8, 8, 8, 6, 8, 8, 4, 6, 10, 4, 8, 6, 6, 12, 8, 4, 6, 6, 6, 4, 12, 8, 4, 8, 8, 12, 4, 6, 4, 8, 8, 8, 4, 8, 8, 8, 8, 14, 4, 12, 10, 4, 4, 8, 12, 8, 4, 6, 12, 6, 4, 6
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Min[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)
  • PARI
    a(n) = my(p = prime(n)); min(numdiv(p-1), numdiv(p+1)); \\ Michel Marcus, Sep 28 2018

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008

A171668 Fibonacci numbers sandwiched between two numbers having same number of divisors.

Original entry on oeis.org

34, 55, 144, 10946, 46368, 196418, 9227465, 1134903170, 4052739537881, 117669030460994, 420196140727489673, 12200160415121876738, 3928413764606871165730, 22698374052006863956975682, 68330027629092351019822533679447, 13598018856492162040239554477268290
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Length[Divisors[n]]; lst={};Do[fi=Fibonacci[n];If[f[fi-1]==f[fi+1],AppendTo[lst,fi]],{n,170}];lst

Extensions

a(15)-a(16) from Amiram Eldar, Aug 08 2024

A260256 Numbers n such that tau(n + 2) = tau(n - 2) where tau(k) = A000005(k).

Original entry on oeis.org

5, 8, 9, 12, 15, 21, 24, 30, 36, 37, 39, 45, 53, 60, 67, 68, 69, 81, 84, 89, 93, 99, 105, 111, 112, 113, 117, 120, 121, 127, 129, 131, 143, 144, 157, 158, 165, 172, 173, 184, 185, 188, 195, 202, 203, 204, 207, 211, 215, 216, 217, 219, 222, 225, 226, 231, 248, 251, 276, 277, 279, 284, 288
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 21 2015

Keywords

Comments

Pinner proves that this sequence is infinite, and in particular a(n) << n (log n)^7. The correct order is conjectured to be around n sqrt(log n). - Charles R Greathouse IV, Jul 21 2015

Examples

			8 is a member as 10 and 6 both have 4 divisors.
		

Crossrefs

Programs

  • Magma
    [ n : n in [3..300] | Denominator((NumberOfDivisors(n-2))/(NumberOfDivisors(n+2))) eq 1 and Denominator((NumberOfDivisors(n+2))/(NumberOfDivisors(n-2))) eq 1];
    
  • Mathematica
    Select[ Range@ 290, DivisorSigma[0, # - 2] == DivisorSigma[0, # + 2] &] (* Robert G. Wilson v, Jul 21 2015 *)
  • PARI
    is(n)=n>4&&numdiv(n-2)==numdiv(n+2) \\ Charles R Greathouse IV, Jul 21 2015

Formula

A000005(a(n) + 2) = A000005(a(n) - 2).

A103886 Rearrangement of prime numbers p according to number of divisors of p-/+1.

Original entry on oeis.org

2, 7, 13, 3, 19, 31, 5, 41, 37, 11, 103, 43, 17, 137, 61, 23, 199, 67, 29, 307, 73, 47, 349, 97, 53, 491, 101, 59, 739, 109
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Comments

Number of divisors of p-1 (less than, equals and larger than) number of divisors of p+1. A103887 - position of p(n) in the sequence.

Crossrefs

Programs

Formula

a(3k-2)=A103664(k); a(3k-1)=A067889(k); a(3k)=A103665(k); (k=1, 2, ...)

A103887 Position of p(n) in rearrangement of prime numbers A103886.

Original entry on oeis.org

1, 4, 7, 2, 10, 3, 13, 5, 16, 19, 6, 9, 8, 12, 22, 25, 28, 15, 18
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Position[A103886, Prime[n]], {n, 19}]//Flatten
Showing 1-10 of 14 results. Next